Acknowledgement
This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant no. 21H04740 and 20K21341).
References
- Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. 2021. Genome-based engineering of ligninolytic enzyme in fungi. Microb. Cell Fact. 20: 20. https://doi.org/10.1186/s12934-021-01510-9
- Hammel KE, Cullen D. 2008. Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11: 349-355. https://doi.org/10.1016/j.pbi.2008.02.003
- Lundell TK, Makela MR, Hilden K. 2010. Lignin-modifying enzymes in filamentous basidiomycetes - Ecological, functional and phylogenetic review. J. Basic Microbiol. 50: 5-20. https://doi.org/10.1002/jobm.200900338
- Wariishi H, Valli K, Gold MH. 1989. Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium. Biochemistry 28: 6017-6023. https://doi.org/10.1021/bi00440a044
- Wariishi H, Valli K, Gold MH. 1991. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 176: 269-275. https://doi.org/10.1016/0006-291X(91)90919-X
- Tuor U, Wariishi H, Gold MH, Schoemaker HE. 1992. Oxidation of phenolic arylglycerol β-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium : oxidative cleavage of an α-carbonyl model compound. Biochemistry 31: 4986-4995. https://doi.org/10.1021/bi00136a011
- Bao W, Fukushima Y, Jensen Jr. KA, Moen MA, Hammel KE. 1994. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett. 354: 297-300. https://doi.org/10.1016/0014-5793(94)01146-X
- Asgher M, Bhatti HN, Ashraf M, Legge RL. 2008. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19: 771-783. https://doi.org/10.1007/s10532-008-9185-3
- Qin X, Zhang J, Zhang X, Yang Y. 2014. Induction, purification and characterization of a novel manganese peroxidase from irpex lacteus CD2 and its application in the decolorization of different types of dye. PLoS One 9: e113282 https://doi.org/10.1371/journal.pone.0113282
- Zhang H, Zhang S, He F, Qin X, Zhang X, Yang Y. 2016. Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J. Hazard. Mater. 320: 265-277. https://doi.org/10.1016/j.jhazmat.2016.07.065
- Bermek H, Li K, Eriksson KEL. 2002. Studies on mediators of manganese peroxidase for bleaching of wood pulps. Bioresour. Technol. 85: 249-252. https://doi.org/10.1016/S0960-8524(02)00132-3
- Hakala TK, Lundell T, Galkin S, Maijala P, Kalkkinen N, Hatakka A. 2005. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb. Technol. 36: 461-468. https://doi.org/10.1016/j.enzmictec.2004.10.004
- Hakala TK, Hilden K, Maijala P, Olsson C, Hatakka A. 2006. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl. Microbiol. Biotechnol. 73: 839-849. https://doi.org/10.1007/s00253-006-0541-0
- Li X, Kondo R, Sakai K. 2002. Studies on hypersaline-tolerant white-rot fungi I: screening of lignin-degrading fungi in hypersaline conditions. J. Wood Sci. 48: 147-152. https://doi.org/10.1007/BF00767292
- Kamei I, Daikoku C, Tsutsumi Y, Kondo R. 2008. Saline-dependent regulation of manganese peroxidase genes in the hypersaline-tolerant white rot fungus Phlebia sp. strain MG-60. Appl. Environ. Microbiol. 74: 2709-2716. https://doi.org/10.1128/AEM.02257-07
- Li X, Kondo R, Sakai K. 2003. Studies on hypersaline-tolerant white-rot fungi III: biobleaching of unbleached kraft pulp by hypersaline-tolerant manganese peroxidase from a marine white rot isolate, Phlebia sp. MG-60. J. Wood Sci. 49: 42-46. https://doi.org/10.1007/s100860300007
- Kamei I, Hirota Y, Meguro S. 2012. Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour. Technol. 126: 137-141. https://doi.org/10.1016/j.biortech.2012.09.007
- Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R. 2012. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour. Technol. 112: 137-142 https://doi.org/10.1016/j.biortech.2012.02.109
- Tri CL, Kamei I. 2020. Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing. Bioresour. Technol. 305: 123065. https://doi.org/10.1016/j.biortech.2020.123065
- Khuong LD, Kondo R, Leon RD, Anh TK, Meguro S, Shimizu K, et al. 2014. Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresour. Technol. 167: 33-40. https://doi.org/10.1016/j.biortech.2014.05.064
- Yamasaki Y, Yamaguchi M, Yamagishi K, Hirai H, Kondo R, Kamei I, et al. 2014. Expression of a manganese peroxidase isozyme 2 transgene in the ethanologenic white rot fungus Phlebia sp. strain MG-60. SpringerPlus 3: 699. https://doi.org/10.1186/2193-1801-3-699
- Tien M, Kirk TK. 1988. Ligninperoxidase of Phanerochaete chrysosporium. Methods Enzymol. 161: 238-249. https://doi.org/10.1016/0076-6879(88)61025-1
- Motoda T, Yamaguchi M, Tsuyama T, Kamei I. 2019. Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity. J. Biosci. Bioeng. 127: 66-72. https://doi.org/10.1016/j.jbiosc.2018.06.017
- Li X, Kondo R, Sakai K. 2003. Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn2+ and NH4+ on manganese peroxidase production and Poly R-478 decolorization by the marine isolate Phlebia sp. MG-60 under saline conditions. J. Wood Sci. 49: 355-360. https://doi.org/10.1007/s10086-002-0492-8
- Keyser P, Kirk TK, Zeikus JG. 1978. Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J. Bacteriol. 135: 790-797. https://doi.org/10.1128/jb.135.3.790-797.1978
- Kornfeld R, Kornfeld S. 1985. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54: 631-664. https://doi.org/10.1146/annurev.bi.54.070185.003215
- Whitwam RE, Gazarian IG, Tien M. 1995. Expression of fungal MN peroxidase in E. coli, and refolding to yield active enzyme. Biochem. Biophys. Res. Commun. 216: 1013-1017. https://doi.org/10.1006/bbrc.1995.2721
- Perez-Boada M, Doyle WA, Ruiz-Duenas FJ, Martinez MJ, Martinez AT, Smith AT. 2002. Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimisation of in vitro folding. Enzyme Microb. Technol. 30: 518-524. https://doi.org/10.1016/S0141-0229(02)00008-X
- Si J, Cui BK. 2013. A new fungal peroxidase with alkaline-tolerant, chloride-enhancing activity and dye decolorization capacity. J. Mol. Catal. B Enzym. 89: 6-14. https://doi.org/10.1016/j.molcatb.2012.12.002
- Cheng X, Jia R, Li P, Tu S, Zhu Q, Tang W, Li X. 2007. Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17, and decolorization of azo dyes by the enzyme. Enzyme Microb. Technol. 41: 258-264. https://doi.org/10.1016/j.enzmictec.2007.01.020
- Praveen K, Usha KY, Viswanath B, Rajasekhar Reddy B. 2012. Kinetic properties of manganese peroxidase from the mushroom Stereum ostrea and its ability to decolorize dyes. J. Microbiol. Biotechnol. 22: 1540-1548 https://doi.org/10.4014/jmb.1112.12011
- Cai Y, Wu H, Liao X, Ding Y, Sun J, Zhang D. 2010. Purification and characterization of novel manganese peroxidase from Rhizoctonia sp. SYBC-M3. Biotechnol. Bioprocess Eng. 15: 1016-1021. https://doi.org/10.1007/s12257-010-0130-z
- Urek RO, Pazarlioglu NK. 2004. Purification and partial characterization of manganese peroxidase from immobilized Phanerochaete chrysosporium. Process Biochem. 39: 2061-2068. https://doi.org/10.1016/j.procbio.2003.10.015
- Bouacem K, Rekik H, Jaouadi NZ, Zenati B, Kourdali S, El Hattab M, et al. 2018. Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera adusta strain CX-9. J. Biol. Macromol. 106: 636-646. https://doi.org/10.1016/j.ijbiomac.2017.08.061