DOI QR코드

DOI QR Code

Hydrolysis of Arabinoxylo-oligosaccharides by α-ʟ-Arabinofuranosidases and β-ᴅ-Xylosidase from Bifidobacterium dentium

  • Lee, Min-Jae (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Kang, Yewon (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Son, Byung Sam (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Kim, Min-Jeong (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Park, Tae Hyeon (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Park, Damee (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University) ;
  • Kim, Tae-Jip (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
  • Received : 2021.12.13
  • Accepted : 2021.12.22
  • Published : 2022.02.28

Abstract

Two α-ʟ-arabinofuranosidases (BfdABF1 and BfdABF3) and a β-ᴅ-xylosidase (BfdXYL2) genes were cloned from Bifidobacterium dentium ATCC 27679, and functionally expressed in E. coli BL21(DE3). BfdABF1 showed the highest activity in 50 mM sodium acetate buffer at pH 5.0 and 25℃. This exo-enzyme could hydrolyze p-nitrophenyl arabinofuranoside, arabino-oligosaccharides (AOS), arabinoxylo-oligosaccharides (AXOS) such as 32-α-ʟ-arabinofuranosyl-xylobiose (A3X), and 23-α-ʟ-arabinofuranosyl-xylotriose (A2XX), whereas hardly hydrolyzed polymeric substrates such as debranched arabinan and arabinoxylans. BfdABF1 is a typical exo-ABF with the higher specific activity on the oligomeric substrates than the polymers. It prefers to α-(1,2)-ʟ-arabinofuranosidic linkages compared to α-(1,3)-linkages. Especially, BfdABF1 could slowly hydrolyze 23,33-di-α-ʟ-arabinofuranosyl-xylotriose (A2+3XX). Meanwhile, BfdABF3 showed the highest activity in sodium acetate at pH 6.0 and 50℃, and it has the exclusively high activities on AXOS such as A3X and A2XX. BfdABF3 mainly catalyzes the removal of ʟ-arabinose side chains from various AXOS. BfdXYL2 exhibited the highest activity in sodium citrate at pH 5.0 and 55℃, and it specifically hydrolyzed p-nitrophenyl xylopyranoside and xylo-oligosaccharides (XOS). Also, BfdXYL2 could slowly hydrolyze AOS and AXOS such as A3X. Based on the detailed hydrolytic modes of action of three exo-hydrolases (BfdABF1, BfdABF3, and BfdXYL2) from Bf. dentium, their probable roles in the hemiceullose-utilization system of Bf. dentium are proposed in the present study. These intracellular exo-hydrolases can synergistically produce ʟ-arabinose and ᴅ-xylose from various AOS, XOS, and AXOS.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [NRF-2017M3C1B5019292 and NRF-2020R1F1A1076947].

References

  1. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. 1996. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374. https://doi.org/10.1016/S0026-0495(96)90117-1
  2. Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, et al. 2015. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 131: 50-56. https://doi.org/10.1016/j.carbpol.2015.05.022
  3. Falck P, Precha-Atsawanan S, Grey C, Immerzeel P, Stalbrand H, Adlercreutz P, et al. 2013. Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis. J. Agric. Food Chem. 61: 7333-7340. https://doi.org/10.1021/jf401249g
  4. Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M. 2009. In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J. Agric. Food Chem. 57: 8598-8606. https://doi.org/10.1021/jf901397b
  5. Jana UK, Kango N, Pletschke B. 2021. Hemicellulose-derived oligosaccharides: Emerging prebiotics in disease alleviation. Front. Nutr. 8: 670817. https://doi.org/10.3389/fnut.2021.670817
  6. Biely P, Singh S, Puchart V. 2016. Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnol. Adv. 34: 1260-1274. https://doi.org/10.1016/j.biotechadv.2016.09.001
  7. Poria V, Saini JK, Singh S, Nain L, Kuhad RC. 2020. Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresour. Technol. 304: 123019. https://doi.org/10.1016/j.biortech.2020.123019
  8. Lagaert S, Pollet A, Courtin CM, Volckaert G. 2014. β-xylosidases and α-ᴸ-arabinofuranosidases: Accessory enzymes for arabinoxylan degradation. Biotechnol. Adv. 32: 316-332. https://doi.org/10.1016/j.biotechadv.2013.11.005
  9. O'Callaghan A, van Sinderen D. 2016. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7: 925. https://doi.org/10.3389/fmicb.2016.00925
  10. Song AX, Li LQ, Yin JY, Chiou JC, Wu JY. 2020. Mechanistic insights into the structure-dependant and strain-specific utilization of wheat arabinoxylan by Bifidobacterium longum. Carbohydr. Polym. 249: 116886. https://doi.org/10.1016/j.carbpol.2020.116886
  11. Pokusaeva K, Fitzgerald GF, van Sinderen D. 2011. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6: 285-306. https://doi.org/10.1007/s12263-010-0206-6
  12. Kelly SM, Munoz-Munoz J, van Sinderen D. 2021. Plant glycan metabolism by Bifidobacteria. Front. Microbiol. 12: 609418. https://doi.org/10.3389/fmicb.2021.609418
  13. Yang J, Tang Q, Xu L, Li Z, Ma Y, Yao D. 2019. Combining of transcriptome and metabolome analyses for understanding the utilization and metabolic pathways of xylo-oligosaccharide in Bifidobacterium adolescentis ATCC 15703. Food Sci. Nutr. 7: 3480-3493. https://doi.org/10.1002/fsn3.1194
  14. Saito Y, Shigehisa A, Watanabe Y, Tsukuda N, Moriyama-Ohara K, Hara T, et al. 2020. Multiple transporters and glycoside hydrolases are involved in arabinoxylan-derived oligosaccharide utilization in Bifidobacterium pseudocatenulatum. Appl. Environ. Microbiol. 86: e01782-20.
  15. van den Broek LA, Lloyd RM, Beldman G, Verdoes JC, McCleary BV, Voragen AG. 2005. Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl. Microbiol. Biotechnol. 67: 641-647. https://doi.org/10.1007/s00253-004-1850-9
  16. Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. 2010. Substrate specificity of three recombinant α-ᴸ-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem. Biophys. Res. Commun. 402: 644-650. https://doi.org/10.1016/j.bbrc.2010.10.075
  17. Margolles A, de los Reyes-Gavilan CG. 2003. Purification and functional characterization of a novel α-L-arabinofuranosidase from Bifidobacterium longum B667. Appl. Environ. Microbiol. 69: 5096-5103. https://doi.org/10.1128/AEM.69.9.5096-5103.2003
  18. Lee JH, Hyun YJ, Kim DH. 2011. Cloning and characterization of α-ᴸ-arabinofuranosidase and bifunctional α-ᴸ-arabinopyranosidase/β-ᴰ-galactopyranosidase from Bifidobacterium longum H-1. J. Appl. Microbiol. 111: 1097-1107. https://doi.org/10.1111/j.1365-2672.2011.05128.x
  19. Komeno M, Hayamizu H, Fujita K, Ashida H. 2019. Two novel α-ᴸ-arabinofuranosidases from Bifidobacterium longum subsp. longum belonging to glycoside hydrolase family 43 cooperatively degrade arabinan. Appl. Environ. Microbiol. 85: e02582-18.
  20. Shin HY, Park SY, Sung JH, Kim DH. 2003. Purification and characterization of α-ᴸ-arabinopyranosidase and α-ᴸ-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl. Environ. Microbiol. 69: 7116-7123. https://doi.org/10.1128/AEM.69.12.7116-7123.2003
  21. Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. 2011. Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Appl. Microbiol. Biotechnol. 92: 1179-1185. https://doi.org/10.1007/s00253-011-3396-y
  22. Hyun YJ, Kim B, Kim DH. 2012. Cloning and characterization of ginsenoside Ra1-hydrolyzing β-D-xylosidase from Bifidobacterium breve K-110. J. Microbiol. Biotechnol. 22: 535-540. https://doi.org/10.4014/jmb.1110.10001
  23. Lugli GA, Tarracchini C, Alessandri G, Milani C, Mancabelli L, Turroni F, et al. 2020. Decoding the genomic variability among members of the Bifidobacterium dentium species. Microorganisms 8: 1720. https://doi.org/10.3390/microorganisms8111720
  24. Michlmayr H, Schumann C, Kulbe KD, del Hierro AM. 2011. Heterologously expressed family 51 α-ᴸ-arabinofuranosidases from Oenococcus oeni and Lactobacillus brevis. Appl. Environ. Microbiol. 77: 1528-1531. https://doi.org/10.1128/AEM.01385-10
  25. Viborg AH, Sorensen KI, Gilad O, Steen-Jensen DB, Dilokpimol A, Jacobsen S, et al. 2013. Biochemical and kinetic characterisation of a novel xylooligosaccharide-upregulated GH43 β-ᴰ-xylosidase/α-ᴸ-arabinofuranosidase (BXA43) from the probiotic Bifidobacterium animalis subsp. lactis BB-12. AMB Express 3: 56. https://doi.org/10.1186/2191-0855-3-56
  26. Michlmayr H, Hell J, Lorenz C, Bohmdorfer S, Rosenau T, Kneifel W. 2013. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl. Environ. Microbiol. 79: 6747-6754. https://doi.org/10.1128/AEM.02130-13
  27. Matsumoto T, Shimada S, Hata Y, Tanaka T, Kondo A. 2015. Multi-functional glycoside hydrolase: Blon_0625 from Bifidobacterium longum subsp. infantis ATCC 15697. Enzyme Microb. Technol. 68: 10-14. https://doi.org/10.1016/j.enzmictec.2014.10.001
  28. Park TH, Choi CY, Kim HJ, Song JR, Park D, Kang HA, et al. 2021. Arabinoxylo- and arabino-oligosaccharides-specific α-ᴸ-arabinofuranosidase GH51 isozymes from the amylolytic yeast Saccharomycopsis fibuligera. J. Microbiol. Biotechnol. 31: 233-240. https://doi.org/10.4014/jmb.2009.09048