Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [NRF-2017M3C1B5019292 and NRF-2020R1F1A1076947].
References
- Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. 1996. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374. https://doi.org/10.1016/S0026-0495(96)90117-1
- Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, et al. 2015. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 131: 50-56. https://doi.org/10.1016/j.carbpol.2015.05.022
- Falck P, Precha-Atsawanan S, Grey C, Immerzeel P, Stalbrand H, Adlercreutz P, et al. 2013. Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis. J. Agric. Food Chem. 61: 7333-7340. https://doi.org/10.1021/jf401249g
- Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M. 2009. In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J. Agric. Food Chem. 57: 8598-8606. https://doi.org/10.1021/jf901397b
- Jana UK, Kango N, Pletschke B. 2021. Hemicellulose-derived oligosaccharides: Emerging prebiotics in disease alleviation. Front. Nutr. 8: 670817. https://doi.org/10.3389/fnut.2021.670817
- Biely P, Singh S, Puchart V. 2016. Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnol. Adv. 34: 1260-1274. https://doi.org/10.1016/j.biotechadv.2016.09.001
- Poria V, Saini JK, Singh S, Nain L, Kuhad RC. 2020. Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresour. Technol. 304: 123019. https://doi.org/10.1016/j.biortech.2020.123019
- Lagaert S, Pollet A, Courtin CM, Volckaert G. 2014. β-xylosidases and α-ᴸ-arabinofuranosidases: Accessory enzymes for arabinoxylan degradation. Biotechnol. Adv. 32: 316-332. https://doi.org/10.1016/j.biotechadv.2013.11.005
- O'Callaghan A, van Sinderen D. 2016. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7: 925. https://doi.org/10.3389/fmicb.2016.00925
- Song AX, Li LQ, Yin JY, Chiou JC, Wu JY. 2020. Mechanistic insights into the structure-dependant and strain-specific utilization of wheat arabinoxylan by Bifidobacterium longum. Carbohydr. Polym. 249: 116886. https://doi.org/10.1016/j.carbpol.2020.116886
- Pokusaeva K, Fitzgerald GF, van Sinderen D. 2011. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6: 285-306. https://doi.org/10.1007/s12263-010-0206-6
- Kelly SM, Munoz-Munoz J, van Sinderen D. 2021. Plant glycan metabolism by Bifidobacteria. Front. Microbiol. 12: 609418. https://doi.org/10.3389/fmicb.2021.609418
- Yang J, Tang Q, Xu L, Li Z, Ma Y, Yao D. 2019. Combining of transcriptome and metabolome analyses for understanding the utilization and metabolic pathways of xylo-oligosaccharide in Bifidobacterium adolescentis ATCC 15703. Food Sci. Nutr. 7: 3480-3493. https://doi.org/10.1002/fsn3.1194
- Saito Y, Shigehisa A, Watanabe Y, Tsukuda N, Moriyama-Ohara K, Hara T, et al. 2020. Multiple transporters and glycoside hydrolases are involved in arabinoxylan-derived oligosaccharide utilization in Bifidobacterium pseudocatenulatum. Appl. Environ. Microbiol. 86: e01782-20.
- van den Broek LA, Lloyd RM, Beldman G, Verdoes JC, McCleary BV, Voragen AG. 2005. Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl. Microbiol. Biotechnol. 67: 641-647. https://doi.org/10.1007/s00253-004-1850-9
- Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. 2010. Substrate specificity of three recombinant α-ᴸ-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem. Biophys. Res. Commun. 402: 644-650. https://doi.org/10.1016/j.bbrc.2010.10.075
- Margolles A, de los Reyes-Gavilan CG. 2003. Purification and functional characterization of a novel α-L-arabinofuranosidase from Bifidobacterium longum B667. Appl. Environ. Microbiol. 69: 5096-5103. https://doi.org/10.1128/AEM.69.9.5096-5103.2003
- Lee JH, Hyun YJ, Kim DH. 2011. Cloning and characterization of α-ᴸ-arabinofuranosidase and bifunctional α-ᴸ-arabinopyranosidase/β-ᴰ-galactopyranosidase from Bifidobacterium longum H-1. J. Appl. Microbiol. 111: 1097-1107. https://doi.org/10.1111/j.1365-2672.2011.05128.x
- Komeno M, Hayamizu H, Fujita K, Ashida H. 2019. Two novel α-ᴸ-arabinofuranosidases from Bifidobacterium longum subsp. longum belonging to glycoside hydrolase family 43 cooperatively degrade arabinan. Appl. Environ. Microbiol. 85: e02582-18.
- Shin HY, Park SY, Sung JH, Kim DH. 2003. Purification and characterization of α-ᴸ-arabinopyranosidase and α-ᴸ-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl. Environ. Microbiol. 69: 7116-7123. https://doi.org/10.1128/AEM.69.12.7116-7123.2003
- Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. 2011. Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Appl. Microbiol. Biotechnol. 92: 1179-1185. https://doi.org/10.1007/s00253-011-3396-y
- Hyun YJ, Kim B, Kim DH. 2012. Cloning and characterization of ginsenoside Ra1-hydrolyzing β-D-xylosidase from Bifidobacterium breve K-110. J. Microbiol. Biotechnol. 22: 535-540. https://doi.org/10.4014/jmb.1110.10001
- Lugli GA, Tarracchini C, Alessandri G, Milani C, Mancabelli L, Turroni F, et al. 2020. Decoding the genomic variability among members of the Bifidobacterium dentium species. Microorganisms 8: 1720. https://doi.org/10.3390/microorganisms8111720
- Michlmayr H, Schumann C, Kulbe KD, del Hierro AM. 2011. Heterologously expressed family 51 α-ᴸ-arabinofuranosidases from Oenococcus oeni and Lactobacillus brevis. Appl. Environ. Microbiol. 77: 1528-1531. https://doi.org/10.1128/AEM.01385-10
- Viborg AH, Sorensen KI, Gilad O, Steen-Jensen DB, Dilokpimol A, Jacobsen S, et al. 2013. Biochemical and kinetic characterisation of a novel xylooligosaccharide-upregulated GH43 β-ᴰ-xylosidase/α-ᴸ-arabinofuranosidase (BXA43) from the probiotic Bifidobacterium animalis subsp. lactis BB-12. AMB Express 3: 56. https://doi.org/10.1186/2191-0855-3-56
- Michlmayr H, Hell J, Lorenz C, Bohmdorfer S, Rosenau T, Kneifel W. 2013. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl. Environ. Microbiol. 79: 6747-6754. https://doi.org/10.1128/AEM.02130-13
- Matsumoto T, Shimada S, Hata Y, Tanaka T, Kondo A. 2015. Multi-functional glycoside hydrolase: Blon_0625 from Bifidobacterium longum subsp. infantis ATCC 15697. Enzyme Microb. Technol. 68: 10-14. https://doi.org/10.1016/j.enzmictec.2014.10.001
- Park TH, Choi CY, Kim HJ, Song JR, Park D, Kang HA, et al. 2021. Arabinoxylo- and arabino-oligosaccharides-specific α-ᴸ-arabinofuranosidase GH51 isozymes from the amylolytic yeast Saccharomycopsis fibuligera. J. Microbiol. Biotechnol. 31: 233-240. https://doi.org/10.4014/jmb.2009.09048