DOI QR코드

DOI QR Code

Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential

  • Hwanhlem, Noraphat (Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University) ;
  • Salaipeth, Lakha (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Charoensook, Rangsun (Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University) ;
  • Kanjan, Pochanart (Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University) ;
  • Maneerat, Suppasil (Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University)
  • Received : 2021.10.25
  • Accepted : 2022.01.11
  • Published : 2022.03.28

Abstract

From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39℃, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.

Keywords

Acknowledgement

Authors thank Kittisak Thampitak, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, for his technical and research assistance.

References

  1. Olson KE, Slack GN. 2006. Food safety begins on the farm: the viewpoint of the producer. Rev. Sci. Tech. 25: 529-539. https://doi.org/10.20506/rst.25.2.1684
  2. Animals NRC (US) C on DU in F. 1999. Food-Animal Production Practices and Drug Use. National Academies Press (US).
  3. Vandael F, de Carvalho Ferreira HC, Devreese M, Dewulf J, Daeseleire E, et al. 2020. Stability, homogeneity and carry-over of amoxicillin, doxycycline, florfenicol and flubendazole in medicated feed and drinking water on 24 pig farms. Antibiotics 9: 563. https://doi.org/10.3390/antibiotics9090563
  4. Castellano P, Perez Ibarreche M, Blanco Massani M, Fontana C, Vignolo GM. 2017. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: a focus on meat ecosystems and industrial environments. Microorganisms 5: 38. https://doi.org/10.3390/microorganisms5030038
  5. Vaishali, Jhandai P, Jadhav VJ, Gupta R. 2019. Bio-preservation of foods: a review. Eur. J. Nutr. Food Saf. 11: 164-174.
  6. Yost CK. 2014. Biopreservation, pp. 76-82, In Dikeman M, Devine C (eds.), Encyclopedia of Meat Sciences (Second Edition). Academic Press, Oxford.
  7. Brashears MM, Amezquita A, Jaroni D. 2005. Lactic acid bacteria and their uses in animal feeding to improve food safety. Adv. Food Nutr. Res. 50: 1-31. https://doi.org/10.1016/S1043-4526(05)50001-9
  8. Wang W, Wang H. 2014. The effect of lactic acid bacteria in food and feed and their impact on food safety. Int. J. Food Eng. 10: 203-210. https://doi.org/10.1515/ijfe-2013-0042
  9. Huang J, Zhang W, Hu Z, Liu Z, Du T, Dai Y, et al. 2020. Isolation, characterization and selection of potential probiotic lactic acid bacteria from feces of wild boar, native pig and commercial pig. Livest. Sci. 237: 104036. https://doi.org/10.1016/j.livsci.2020.104036
  10. Hwanhlem N, Ivanova T, Biscola V, Choiset Y, Haertle T. 2017. Bacteriocin producing Enterococcus faecalis isolated from chicken gastrointestinal tract originating from Phitsanulok, Thailand: isolation, screening, safety evaluation and probiotic properties. Food Control 78: 187-195. https://doi.org/10.1016/j.foodcont.2017.02.060
  11. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  12. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  13. Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101: 11030-11035. https://doi.org/10.1073/pnas.0404206101
  14. Hwanhlem N, Ivanova T, Haertle T, Jaffres E, Dousset X. 2017. Inhibition of food-spoilage and foodborne pathogenic bacteria by a nisin Z-producing Lactococcus lactis subsp. lactis KT2W2L. LWT - Food Sci. Technol. 82: 170-175. https://doi.org/10.1016/j.lwt.2017.04.052
  15. Bover-Cid S, Holzapfel WH. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 53: 33-41. https://doi.org/10.1016/S0168-1605(99)00152-X
  16. Lee HM, Lee Y. 2008. A differential medium for lactic acid-producing bacteria in a mixed culture. Lett. Appl. Microbiol. 46: 676-681. https://doi.org/10.1111/j.1472-765X.2008.02371.x
  17. Gao Z, Daliri EB-M, Wang J, Liu D, Chen S, Ye X, et al. 2019. Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J. Food Prot. 82: 441-453. https://doi.org/10.4315/0362-028x.jfp-18-303
  18. Abebe E, Gugsa G, Ahmed M. 2020. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med. 2020: 4674235.
  19. Lim JY, Yoon JW, Hovde CJ. 2010. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 20: 5-14. https://doi.org/10.4014/jmb.0908.08007
  20. Mueller M, Tainter CR. 2021. Escherichia coli, StatPearls. StatPearls Publishing, Treasure Island (FL).
  21. Gould D. 2010. Causes, prevention and treatment of Escherichia coli infections. Nurs. Stand. 24: 50-56; quiz 58.
  22. Rogalla D, Bomar PA. 2021. Listeria monocytogenes, StatPearls. StatPearls Publishing, Treasure Island (FL).
  23. Hernandez-Milian A, Payeras-Cifre A. 2014. What is new in listeriosis? BioMed Res. Int. 2014: 358051. https://doi.org/10.1155/2014/358051
  24. Giannella RA. 1996. Salmonella, In Baron S (ed.), Medical Microbiology, 4th Ed, University of Texas Medical Branch at Galveston, Galveston (TX).
  25. Kurtz JR, Goggins JA, McLachlan JB. 2017. Salmonella infection: interplay between the bacteria and host immune system. Immunol. Lett. 190: 42-50. https://doi.org/10.1016/j.imlet.2017.07.006
  26. Popa GL, Papa MI. 2021. Salmonella spp. infection - a continuous threat worldwide. Germs 11: 88-96. https://doi.org/10.18683/germs.2021.1244
  27. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28: 603-661. https://doi.org/10.1128/CMR.00134-14
  28. Taylor TA, Unakal CG. 2021. Staphylococcus aureus, StatPearls. StatPearls Publishing, Treasure Island (FL).
  29. Dayan GH, Mohamed N, Scully IL, Cooper D, Begier E, Eiden J, et al. 2016. Staphylococcus aureus: the current state of disease, pathophysiology and strategies for prevention. Expert Rev. Vaccines 15: 1373-1392. https://doi.org/10.1080/14760584.2016.1179583
  30. Salehizadeh M, Modarressi MH, Mousavi SN, Tajabadi Ebrahimi M. 2020. Evaluation of lactic acid bacteria isolated from poultry feces as potential probiotic and it's in vitro competitive activity against Salmonella typhimurium. Vet. Res. Forum 11: 67-75.
  31. Sirichokchatchawan W, Pupa P, Praechansri P, Am-in N, Tanasupawat S, Sonthayanon P, et al. 2018. Autochthonous lactic acid bacteria isolated from pig faeces in Thailand show probiotic properties and antibacterial activity against enteric pathogenic bacteria. Microb. Pathog. 119: 208-215. https://doi.org/10.1016/j.micpath.2018.04.031
  32. Chen T, Wang L, Li Q, Long Y, Lin Y, Yin J, et al. 2020. Functional probiotics of lactic acid bacteria from Hu sheep milk. BMC Microbiol. 20: 228. https://doi.org/10.1186/s12866-020-01920-6
  33. Yang S-C, Lin C-H, Sung CT, Fang J-Y. 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front. Microbiol. 5: 241. https://doi.org/10.3389/fmicb.2014.00241
  34. Zacharof MP, Lovitt RW. 2012. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia 2: 50-56. https://doi.org/10.1016/j.apcbee.2012.06.010
  35. Ammor S, Tauveron G, Dufour E, Chevallier I. 2006. Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility: 1-Screening and characterization of the antibacterial compounds. Food Control 17: 454-461. https://doi.org/10.1016/j.foodcont.2005.02.006
  36. Bhagat D, Raina N, Kumar A, Katoch M, Khajuria Y, Slathia PS, et al. 2020. Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Sci. Rep. 10: 1926. https://doi.org/10.1038/s41598-020-58676-2
  37. Zommiti M, Cambronel M, Maillot O, Barreau M, Sebei K, Feuilloley M, et al. 2018. Evaluation of probiotic properties and safety of Enterococcus faecium isolated from artisanal Tunisian meat "Dried Ossban". Front. Microbiol. 9: 1685. https://doi.org/10.3389/fmicb.2018.01685
  38. Baccouri O, Boukerb AM, Farhat LB, Zebre A, Zimmermann K, Domann E, et al. 2019. Probiotic potential and safety evaluation of Enterococcus faecalis OB14 and OB15, isolated from traditional Tunisian Testouri cheese and Rigouta, using physiological and genomic analysis. Front. Microbiol. 10: 881. https://doi.org/10.3389/fmicb.2019.00881
  39. Shi Y, Zhai M, Li J, Li B. 2020. Evaluation of safety and probiotic properties of a strain of Enterococcus faecium isolated from chicken bile. J. Food Sci. Technol. 57: 578-587. https://doi.org/10.1007/s13197-019-04089-7
  40. Holland R, Crow V, Curry B. 2011. Lactic acid bacteria | Pediococcus spp., pp 149-152, In Fuquay JW (ed.), Encyclopedia of Dairy Sciences (Second Edition). Academic Press, San Diego., USA.
  41. Raccach M. 2014. Pediococcus, pp. 1-5., In Batt CA, Tortorello ml (eds.), Encyclopedia of Food Microbiology (Second Edition). Academic Press, Oxford.
  42. Abbasiliasi S, Tan JS, Ibrahim TAT, Ramanan RN, Vakhshiteh F, Mustafa S, et al. 2012. Isolation of Pediococcus acidilactici Kp10 with ability to secrete bacteriocin-like inhibitory substance from milk products for applications in food industry. BMC Microbiol. 12: 260. https://doi.org/10.1186/1471-2180-12-260
  43. Mandal V, Sen SK, Mandal NC. 2011. Isolation and characterization of Pediocin NV 5 producing Pediococcus acidilactici LAB 5 from vacuum-packed fermented meat product. Indian J. Microbiol. 51: 22-29. https://doi.org/10.1007/s12088-011-0070-0
  44. Reuben RC, Roy PC, Sarkar SL, Alam R-U, Jahid IK. 2019. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol. 19: 253. https://doi.org/10.1186/s12866-019-1626-0
  45. Piva A, Headon DR. 1994. Pediocin A, a bacteriocin produced by Pediococcus pentosaceus FBB61. Microbiology 140 (Pt 4): 697-702. https://doi.org/10.1099/00221287-140-4-697
  46. Devi SM, Halami PM. 2011. Detection and characterization of pediocin PA-1/AcH like bacteriocin producing lactic acid bacteria. Curr. Microbiol. 63: 181-185. https://doi.org/10.1007/s00284-011-9963-8
  47. Chelliah R, Saravanakumar K, Daliri EB-M, Kim J-H, Lee J-K, Jo H, et al. 2020. Unveiling the potentials of bacteriocin (Pediocin L50) from Pediococcus acidilactici with antagonist spectrum in a Caenorhabditis elegans model. Int. J. Biol. Macromol. 143: 555-572. https://doi.org/10.1016/j.ijbiomac.2019.10.196
  48. Mora D, Fortina MG, Parini C, Manachini PL. 1997. Identification of Pediococcus acidilactici and Pediococcus pentosaceus based on 16S rRNA and ldhD gene-targeted multiplex PCR analysis. FEMS Microbiol. Lett. 151: 231-236. https://doi.org/10.1016/S0378-1097(97)00165-1
  49. Hassen B, Saloua B, Abbassi MS, Ruiz-Ripa L, Mama OM, Hassen A, et al. 2019. mcr-1 encoding colistin resistance in CTX-M-1/CTX-M-15- producing Escherichia coli isolates of bovine and caprine origins in Tunisia. First report of CTX-M-15-ST394/D E. coli from goats. Comp. Immunol. Microbiol. Infect. Dis. 67: 101366. https://doi.org/10.1016/j.cimid.2019.101366
  50. Diaz N, Ninomiya K, Noble J, Dornfeld D. 2012. Environmental impact characterization of milling and implications for potential energy savings in industry. Procedia CIRP 1: 518-523. https://doi.org/10.1016/j.procir.2012.04.092
  51. Mushtaq H, Bakht J, Khan I, Ahmad B. 2021. Antimicrobial efficacy and prevalence of colicinogenic E. coli in faecal matter of human, cow and sheep. Int. J. Antimicrob. Agents 57: 106221. https://doi.org/10.1016/j.ijantimicag.2020.106221
  52. Shabana II, Al-Enazi AT. 2020. Investigation of plasmid-mediated resistance in E. coli isolated from healthy and diarrheic sheep and goats. Saudi J. Biol. Sci. 27: 788-796. https://doi.org/10.1016/j.sjbs.2020.01.009
  53. Fairchild TM, Foegeding PM. 1993. A proposed nonpathogenic biological indicator for thermal inactivation of Listeria monocytogenes. Appl. Environ. Microbiol. 59: 1247-1250. https://doi.org/10.1128/aem.59.4.1247-1250.1993
  54. Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malik SVS, et al. 2015. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet. Q. 35: 211-235. https://doi.org/10.1080/01652176.2015.1063023
  55. Koutsoumanis K, Allende A, Alvarez-Ordonez A, Bolton D, Bover-Cid S, Chemaly M, et al. 2019. Salmonella control in poultry flocks and its public health impact. EFSA J. 17: e05596.
  56. Rebollada-Merino A, Ugarte-Ruiz M, Hernandez M, Miguela-Villoldo P, Abad D, Rodriguez-Lazaro D, et al. 2020. Reduction of Salmonella Typhimurium cecal colonisation and improvement of intestinal health in broilers supplemented with fermented defatted 'alperujo', an olive oil by-product. Animals 10: 1931. https://doi.org/10.3390/ani10101931
  57. Afshari A, Baratpour A, Khanzade S, Jamshidi A. 2018. Salmonella Enteritidis and Salmonella Typhimorium identification in poultry carcasses. Iran. J. Microbiol. 10: 45-50.
  58. Batt CA. 2014. Listeria | Introduction, pp. 466-469., In Batt CA, Tortorello ml (eds.), Encyclopedia of Food Microbiology (Second Edition). Academic Press, Oxford.
  59. Kelly AF, Patchett RA. 1996. Lactate and acetate production in Listeria innocua. Lett. Appl. Microbiol. 23: 125-128. https://doi.org/10.1111/j.1472-765X.1996.tb00046.x
  60. Liu Y, Zhu L, Dong P, Liang R, Mao Y, Yang X, et al. 2019. Acid tolerance response of Listeria monocytogenes in various external pHs with different concentrations of lactic acid. Foodborne Pathog. Dis. 17: 253-261. https://doi.org/10.1089/fpd.2019.2730
  61. Smith JL, Liu Y, Paoli GC. 2013. How does Listeria monocytogenes combat acid conditions? Can. J. Microbiol. 59: 141-152. https://doi.org/10.1139/cjm-2012-0392
  62. Yang E, Fan L, Jiang Y, Doucette C, Fillmore S. 2012. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express 2: 48. https://doi.org/10.1186/2191-0855-2-48
  63. Aragon-Alegro LC, Lima EMF, Palcich G, Nunes TP, de Souza KLO, Martins CG, et al. 2021. Listeria monocytogenes inhibition by lactic acid bacteria and coliforms in Brazilian fresh white cheese. Braz. J. Microbiol. 52: 847-858. https://doi.org/10.1007/s42770-021-00431-4
  64. Garcia A, Bonilla F, Villasmil E, Reyes V, Sathivel S. 2022. Antilisterial activity of freeze-dried bacteriocin-containing powders produced by lactic acid bacteria against Listeria innocua NRRL B-33016 on cantaloupe (Cucumis melo) surface. LWT 154: 112440. https://doi.org/10.1016/j.lwt.2021.112440
  65. Tome E, Gibbs PA, Teixeira PC. 2008. Growth control of Listeria innocua 2030c on vacuum-packaged cold-smoked salmon by lactic acid bacteria. Int. J. Food Microbiol. 121: 285-294. https://doi.org/10.1016/j.ijfoodmicro.2007.11.015
  66. Ianiro G, Pecere S, Giorgio V, Gasbarrini A, Cammarota G. 2016. Digestive enzyme supplementation in gastrointestinal diseases. Curr. Drug Metab. 17: 187-193. https://doi.org/10.2174/138920021702160114150137
  67. Pinto A, Barbosa J, Albano H, Isidro J, Teixeira P. 2020. Screening of bacteriocinogenic lactic acid bacteria and their characterization as potential probiotics. Microorganisms 8: 393. https://doi.org/10.3390/microorganisms8030393
  68. Olajugbagbe TE, Elugbadebo OE, Omafuvbe BO. 2020. Probiotic potentials of Pediococuss acidilactici isolated from wara; A Nigerian unripened soft cheese. Heliyon 6: e04889. https://doi.org/10.1016/j.heliyon.2020.e04889
  69. Ruiz L, Margolles A, Sanchez B. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 4: 396. https://doi.org/10.3389/fmicb.2013.00396
  70. Bollom MA, Clark S, Acevedo NC. 2021. Edible lecithin, stearic acid, and whey protein bigels enhance survival of probiotics during in vitro digestion. Food Biosci. 39: 100813. https://doi.org/10.1016/j.fbio.2020.100813
  71. Poletto G, Raddatz GC, Cichoski AJ, Zepka LQ, Lopes EJ, Barin JS, et al. 2019. Study of viability and storage stability of Lactobacillus acidophillus when encapsulated with the prebiotics rice bran, inulin and Hi-maize. Food Hydrocoll. 95: 238-244. https://doi.org/10.1016/j.foodhyd.2019.04.049
  72. Zhang L, Li J, Yun TT, Qi WT, Liang XX, Wang YW, et al. 2015. Effects of pre-encapsulated and pro-encapsulated Enterococcus faecalis on growth performance, blood characteristics, and cecal microflora in broiler chickens. Poult. Sci. 94: 2821-2830. https://doi.org/10.3382/ps/pev262