DOI QR코드

DOI QR Code

Prevalence of GII.4 Sydney 2012 and Recombinant GII.3P[12] Noroviruses Associated with Acute Gastroenteritis in Hospitalized Children in Thailand, 2015-2017

  • Manowong, Areerat (Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University) ;
  • Chanta, Chulapong (Pediatric Unit, Chiangrai Prachanukroh Hospital) ;
  • Chan-it, Wisoot (Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University)
  • Received : 2021.09.06
  • Accepted : 2022.02.03
  • Published : 2022.03.28

Abstract

Norovirus (NoV) is an important pathogen causing acute gastroenteritis worldwide. The purpose of the present study was the molecular characterization of NoV. A total of 408 stool specimens collected from hospitalized children associated with acute gastroenteritis in Chiang Rai, Thailand, 2015-2017 were investigated for the presence of NoVs by RT-PCR. NoV GII was detected in 32 samples (7.8%). Five distinct genotypes were identified, including GII.4 (13/32, 40.6%), GII.3 (11/32, 34.3%), GII.17 (4/32, 12.5%), GII.2 (2/32, 6.3%), and GII.14 (2/32, 6.3%). NoV infection occurred mostly in young children under 3 years of age (31/32, 96.9%) and showed the main peak in summer months from March to April (18/32, 56.3%). Phylogenetic analysis revealed that all 13 GII.4 strains clustered with GII.4 Sydney 2012 variant. Representative GII.3 strains were analyzed as a recombinant GII.3P[12] strain. Several amino acid differences were found in the antigenic epitopes and antibody binding sites of the VP1 capsid of the GII.3P[12]. Homology modeling of the P domain of the GII.3P[12] strain demonstrated that 10/13 amino acid differences were predicted to be located on the surface-exposed area of the capsid structure. These amino acid changes might affect the infectivity and the antigenicity of the recombinant GII.3P[12]. The prevalence of GII.4 Sydney 2012 and recombinant GII.3P[12] strains indicates the genetic diversity of circulating NoVs in Thailand, emphazing the importance of continuous surveillance to mornitor newly emerging NoV strains in the future.

Keywords

Acknowledgement

We thank the participants for their cooperation of this study and the staff members of Pediatric Unit, Chiangrai Prachanukroh Hospital for fecal specimen collection. The authors gratefully acknowledge Prof. Dr. Yong Poovorawan for initial advice including submitting documents for approval research ethics. This study was partially supported by grants-in-aid from Pibulsongkram Rajabhat University, Thailand.

References

  1. Desselberger U, Goodfellow I. 2014. Noroviruses: a global cause of acute gastroenteritis. Lancet Infect. Dis. 14: 664-665. https://doi.org/10.1016/S1473-3099(14)70776-5
  2. Chan-It W, Thongprachum A, Khamrin P, Kobayashi M, Okitsu S, Mizuguchi M, et al. 2012. Emergence of a new norovirus GII.6 variant in Japan, 2008-2009. J. Med. Virol. 84: 1089-1096. https://doi.org/10.1002/jmv.23309
  3. Chan-It W, Thongprachum A, Okitsu S, Mizuguchi M, Ushijima H. 2014. Genetic analysis and homology modeling of capsid protein of norovirus GII.14. J. Med. Virol. 86: 329-334. https://doi.org/10.1002/jmv.23720
  4. Fu J, Ai J, Bao C, Zhang J, Wu Q, Zhu L, Hu J, et al. 2021. Evolution of the GII.3[P12] Norovirus from 2010 to 2019 in Jiangsu, China. Gut Pathog. 13: 34. https://doi.org/10.1186/s13099-021-00430-8
  5. Lindesmith LC, Donaldson EF, Lobue AD, Cannon JL, Zheng DP, Vinje J, et al. 2008. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med. 5: e31. https://doi.org/10.1371/journal.pmed.0050031
  6. Chhabra P, de Graaf M, Parra GI, Chan MC, Green K, Martella V, et al. 2019. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol. 100: 1393-1406. https://doi.org/10.1099/jgv.0.001318
  7. Kroneman A, Vega E, Vennema H, Vinje J, White PA, Hansman G, et al. 2013. Proposal for a unified norovirus nomenclature and genotyping. Arch. Virol. 158: 2059-2068. https://doi.org/10.1007/s00705-013-1708-5
  8. Chan-It W, Thongprachum A, Okitsu S, Nishimura S, Kikuta H, Baba T, et al. 2011. Detection and genetic characterization of norovirus infections in children with acute gastroenteritis in Japan, 2007-2009. Clin. Lab. 57: 213-220.
  9. Thanusuwannasak T, Puenpa J, Chuchaona W, Vongpunsawad S, Poovorawan Y. 2018. Emergence of multiple norovirus strains in Thailand, 2015-2017. Infect. Genet. Evol. 61: 108-112. https://doi.org/10.1016/j.meegid.2018.03.021
  10. Sang S, Zhao Z, Suo J, Xing Y, Jia N, Gao Y, et al. 2014. Report of recombinant norovirus GII.g/GII.12 in Beijing, China. PLoS One 5: e88210.
  11. Boonchan M, Guntapong R, Sripirom N, Ruchusatsawat K, Singchai P, Rungnobhakhun P, et al. 2018. The dynamics of norovirus genotypes and genetic analysis of a novel recombinant GII.P12-GII.3 among infants and children in Bangkok, Thailand between 2014 and 2016. Infect. Genet. Evol. 60: 133-139. https://doi.org/10.1016/j.meegid.2018.02.028
  12. Cao RR, Ma XZ, Li WY, Wang BN, Yang Y, Wang HR, et al. 2021. Epidemiology of norovirus gastroenteritis in hospitalized children under five years old in western China, 2015-2019. J. Microbiol. Immunol. Infect. 26: S1684-1182(21)00015-3.
  13. Chen L, Xu D, Wu X, Liu G, Ji L. 2020. An increasing prevalence of non-GII.4 norovirus genotypes in acute gastroenteritis outbreaks in Huzhou, China, 2014-2018. Arch. Virol. 165: 1121-1128. https://doi.org/10.1007/s00705-020-04599-2
  14. Fang Y, Dong Z, Liu Y, Wang W, Hou M, Wu J, et al. 2021. Molecular epidemiology and genetic diversity of norovirus among hospitalized children with acute gastroenteritis in Tianjin, China, 2018-2020. BMC Infect. Dis. 14: 682. https://doi.org/10.1186/s12879-014-0682-1
  15. Kuang X, Teng Z, Zhang X. 2019. Genotypic prevalence of norovirus GII in gastroenteritis outpatients in Shanghai from 2016 to 2018. Gut Pathog. 26: 40. https://doi.org/10.1186/s13099-019-0321-x
  16. Lu QB, Huang DD, Zhao J, Wang HY, Zhang XA, Xu HM, et al. 2015. An increasing prevalence of recombinant GII norovirus in pediatric patients with diarrhea during 2010-2013 in China. Infect. Genet. Evol. 31: 48-52. https://doi.org/10.1016/j.meegid.2015.01.008
  17. Lu L, Zhong H, Xu M, Su L, Cao L, Jia R, et al. 2019. Genetic diversity and epidemiology of Genogroup II noroviruses in children with acute sporadic gastroenteritis in Shanghai, China, 2012-2017. BMC Infect. Dis. 22: 736.
  18. Wang X, Wei Z, Guo J, Cai J, Chang H, Ge Y, et al. 2019. Norovirus activity and genotypes in sporadic acute diarrhea in children in Shanghai during 2014-2018. Pediatr. Infect. Dis. J. 38: 1085-1089. https://doi.org/10.1097/INF.0000000000002456
  19. Zhou H, Wang S, von Seidlein L, Wang X. 2019. The epidemiology of norovirus gastroenteritis in China: disease burden and distribution of genotypes. Front. Med. 14: 1-7. https://doi.org/10.1007/s11684-019-0733-5
  20. Kojima S, Kageyama T, Fukushi S, Hoshino FB, Shinohara M, Uchida K, et al. 2002. Genogroup-specific PCR primers for detection of Norwalk-like viruses. J. Virol. Methods 100: 107-114. https://doi.org/10.1016/S0166-0934(01)00404-9
  21. Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushi S, Hoshino FB, et al. 2003. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J. Clin. Microbiol. 41: 1548-1557. https://doi.org/10.1128/JCM.41.4.1548-1557.2003
  22. Vennema H, de Bruin E, Koopmans M. 2002. Rational optimization of generic primers used for Norwalk-like virus detection by reverse transcriptase polymerase chain reaction. J. Clin. Virol. 25: 233-235. https://doi.org/10.1016/S1386-6532(02)00126-9
  23. Bull RA, Tu ET, McIver CJ, Rawlinson WD, White PA. 2006. Emergence of a new norovirus genotype II.4 variant associated with global outbreaks of gastroenteritis. J. Clin. Microbiol. 44: 327-333. https://doi.org/10.1128/JCM.44.2.327-333.2006
  24. Eden JS, Tanaka MM, Boni MF, Rawlinson WD, White PA. 2013. Recombination within the pandemic norovirus GII.4 lineage. J. Virol. 87: 6270-6282. https://doi.org/10.1128/JVI.03464-12
  25. Kumthip K, Khamrin P, Maneekarn N. 2018. Molecular epidemiology and genotype distributions of noroviruses and sapoviruses in Thailand 2000-2016: A review. J. Med. Virol. 90: 617-624. https://doi.org/10.1002/jmv.25019
  26. Supadej K, Khamrin P, Kumthip K, Malasao R, Chaimongkol N, Saito M, et al. 2019. Distribution of norovirus and sapovirus genotypes with emergence of NoV GII.P16/GII.2 recombinant strains in Chiang Mai, Thailand. J. Med. Virol. 91: 215-224. https://doi.org/10.1002/jmv.25261
  27. Chuchaona W, Chansaenroj J, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. 2019. Recombinant GII.Pe-GII.4 Norovirus, Thailand, 2017-2018. Emerg. Infect. Dis. 25: 1612-1614. https://doi.org/10.3201/eid2508.190365
  28. Thongprachum A, Chan-it W, Khamrin P, Saparpakorn P, Okitsu S, Takanashi S, et al. 2014. Molecular epidemiology of norovirus associated with gastroenteritis and emergence of norovirus GII.4 variant 2012 in Japanese pediatric patients. Infect. Genet. Evol. 23: 65-73. https://doi.org/10.1016/j.meegid.2014.01.030
  29. Chan-It W, Chanta C. 2018. Emergence of G9P[8] rotaviruses in children with acute gastroenteritis in Thailand, 2015-2016. J. Med. Virol. 90: 477-484. https://doi.org/10.1002/jmv.24985
  30. Chaiyaem T, Chanta C, Chan-it W. 2021. An emergence of equinelike G3P[8] rotaviruses associated with acute gastroenteritis in hospitalized children in Thailand, 2016-2018. Microbiol. Biotechnol. Lett. 49: 120-129. https://doi.org/10.48022/mbl.2009.09013
  31. Dey SK, Sharif N, Billah B, Siddique TT, Islam T, Parvez AK, et al. 2021. Molecular epidemiology and genetic diversity of norovirus infection in children with acute gastroenteritis in Bangladesh, 2014-2019. J. Med. Virol. 93: 3564-3571. https://doi.org/10.1002/jmv.26772
  32. Dey SK, Phathammavong O, Okitsu S, Mizuguchi M, Ohta Y, Ushijima H. 2010. Seasonal pattern and genotype distribution of norovirus infection in Japan. Pediatr. Infect. Dis. J. 29: e32-4.
  33. Lopman B, Armstrong B, Atchison C, Gray JJ. 2009. Host, weather and virological factors drive norovirus epidemiology: time-series analysis of laboratory surveillance data in England and Wales. PLoS One 24: 4:e6671. https://doi.org/10.1371/journal.pone.0006671
  34. Calderwood LE, Wikswo ME, Mattison CP, Kambhampati AK, Balachandran N, Vinje J, et al. 2022. Norovirus outbreaks in long-term care facilities in the United States, 2009-2018: a decade of surveillance. Clin. Infect. Dis. 74: 113-119. https://doi.org/10.1093/cid/ciab808
  35. Rohayem J. 2009. Norovirus seasonality and the potential impact of climate change. Clin. Microbiol. Infect. 15: 524-527. https://doi.org/10.1111/j.1469-0691.2009.02846.x
  36. Mounts AW, Ando T, Koopmans M, Bresee JS, Noel J, Glass RI. 2000. Cold weather seasonality of gastroenteritis associated with Norwalk-like viruses. J. Infect. Dis. 181 Suppl 2: S284-7.
  37. Hernandez JM, Silva LD, Sousa Junior EC, Cardoso JF, Reymao TKA, Portela ACR, et al. 2020. Evolutionary and molecular analysis of complete genome sequences of norovirus from Brazil: emerging recombinant strain GII.P16/GII.4. Front. Microbiol. 6: 1870.
  38. Chan MC, Kwok K, Zhang LY, Mohammad KN, Lee N, Lui GCY, et al. 2018. Bimodal seasonality and alternating predominance of norovirus GII.4 and non-GII.4, Hong Kong, China, 2014-2017. Emerg. Infect. Dis. 24: 767-769. https://doi.org/10.3201/eid2404.171791
  39. Mathew S, Alansari K, Smatti MK, Zaraket H, Al Thani AA, Yassine HM. 2019. Epidemiological, Molecular, and clinical features of norovirus infections among pediatric patients in Qatar. Viruses 11: 400. https://doi.org/10.3390/v11050400
  40. Tan M. 2021. Norovirus vaccines: current clinical development and challenges. Pathogens 10: 1641. https://doi.org/10.3390/pathogens10121641
  41. Lowmoung T, Pombubpa K, Duangdee T, Tipayamongkholgul M, Kittigul L. 2017. Distribution of Naturally Occurring Norovirus Genogroups I, II, and IV in Oyster Tissues. Food Environ. Virol. 9: 415-422. https://doi.org/10.1007/s12560-017-9305-5
  42. Kittigul L, Thamjaroen A, Chiawchan S, Chavalitshewinkoon-Petmitr P, Pombubpa K, Diraphat P. 2016. Prevalence and molecular genotyping of noroviruses in market oysters, mussels, and cockles in Bangkok, Thailand. Food Environ. Virol. 8: 133-140. https://doi.org/10.1007/s12560-016-9228-6
  43. Saito M, Tsukagoshi H, Ishigaki H, Aso J, Ishii H, Okayama K, et al. 2020. Molecular evolution of the capsid (VP1) region in human norovirus genogroup II genotype 3. Heliyon. 6: e03835. https://doi.org/10.1016/j.heliyon.2020.e03835
  44. Boon D, Mahar JE, Abente EJ, Kirkwood CD, Purcell RH, Kapikian AZ, et al. 2011. Comparative evolution of GII.3 and GII.4 norovirus over a 31-year period. J. Virol. 85: 8656-8666. https://doi.org/10.1128/JVI.00472-11
  45. Mahar JE, Bok K, Green KY, Kirkwood CD. 2013. The importance of intergenic recombination in norovirus GII.3 evolution. J. Virol. 87: 3687-3698. https://doi.org/10.1128/JVI.03056-12