Acknowledgement
PK and RB are supported by the junior research fellowship program of the Symbiosis International (Deemed University). The work was supported by the Ramalingaswami fellowship program of Department of Biotechnology, India under grant BT/RLF/Reentry/41/2015.
References
- Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2: a012427. https://doi.org/10.1101/cshperspect.a012427
- Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319-346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001
- Ryan RP, Dow JM. 2008. Diffusible signals and interspecies communication in bacteria. Microbiology 154: 1845-1858. https://doi.org/10.1099/mic.0.2008/017871-0
- Fajardo A, Martinez JL. 2008. Antibiotics as signals that trigger specific bacterial responses. Curr. Opin. Microbiol. 11: 161-167. https://doi.org/10.1016/j.mib.2008.02.006
- Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199. https://doi.org/10.1146/annurev.micro.55.1.165
- Parsek MR, Val DL, Hanzelka BL, Cronan Jr JE, Greenberg EP. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96: 4360-4365. https://doi.org/10.1073/pnas.96.8.4360
- Eberl L. 1999. N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst. Appl. Microbiol. 22: 493-506. https://doi.org/10.1016/S0723-2020(99)80001-0
- Schauder S, Bassler BL. 2001. The languages of bacteria. Genes Dev. 15: 1468-1480. https://doi.org/10.1101/gad.899601
- Ismail AS, Valastyan JS, Bassler BL. 2016. A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe 19: 470-480. https://doi.org/10.1016/j.chom.2016.02.020
- Hughes DT, Sperandio V. 2008. Inter-kingdom signaling communication between bacteria and their hosts. Nat. Rev. Microbiol. 6: 111-120. https://doi.org/10.1038/nrmicro1836
- Sircili MP, Walters M, Trabulsi LR, Sperandio V. 2004. Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infect. Immun. 72: 2329-2337. https://doi.org/10.1128/IAI.72.4.2329-2337.2004
- Verstrepen KJ, Reynolds TB, Fink GR. 2004. Origins of variation in the fungal cell surface. Nat. Rev. Microbiol. 2: 533-540. https://doi.org/10.1038/nrmicro927
- Lee J, Jayaraman A, Wood TK. 2007. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 7: 42. https://doi.org/10.1186/1471-2180-7-42
- Kuczynska-Wisnik D, Matuszewska E, Furmanek-Blaszk B, Leszczynska D, Grudowska A, Szczepaniak P, et al. 2010. Antibiotics promoting oxidative stress inhibit formation of Escherichia coli biofilm via indole signaling. Res. Microbiol. 161: 847-853. https://doi.org/10.1016/j.resmic.2010.09.012
- Lee JH, Lee J. 2010. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34: 426-444. https://doi.org/10.1111/j.1574-6976.2009.00204.x
- Davies J. 1990. What are antibiotics? Archaic functions for modern activities. Mol. Microbiol. 4: 1227-1232. https://doi.org/10.1111/j.1365-2958.1990.tb00701.x
- Davies J. 2007. Microbes have the last word: A drastic re-evaluation of antimicrobial treatment is needed to overcome the threat of antibiotic-resistant bacteria. EMBO Rep. 8: 616-621. https://doi.org/10.1038/sj.embor.7401022
- Seshasayee AS, Bertone P, Fraser GM, Luscombe NM. 2006. Transcriptional regulatory networks in bacteria: from input signals to output responses. Curr. Opin. Microbiol. 9: 511-519. https://doi.org/10.1016/j.mib.2006.08.007
- Yim G, Wang HH, Davies J. 2006. The truth about antibiotics. Int. J. Med. Microbiol. 296: 163-170. https://doi.org/10.1016/j.ijmm.2006.01.039
- Yim G, Huimi Wang H, Davies Frs J. 2007. Antibiotics as signaling molecules. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 362: 1195-1200. https://doi.org/10.1098/rstb.2007.2044
- Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20: 2444-2449. https://doi.org/10.1021/bi00512a013
- Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Lglewski BH, et al. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA 91: 197-201. https://doi.org/10.1073/pnas.91.1.197
- Pearson JP, Passador L, Iglewski BH, Greenberg EP. 1995. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92: 1490-1494. https://doi.org/10.1073/pnas.92.5.1490
- Gray KM, Pearson JP, Downie JA, Boboye BE, Freenberg EP. 1996. Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J. Bacteriol. 178: 372-376. https://doi.org/10.1128/jb.178.2.372-376.1996
- Eberhard A, Longin T, Widrig CA, Stranick SJ. 1991. Synthesis of the lux gene autoinducer in Vibrio fischeri is positively autoregulated. Arch. Microbiol. 155: 294-297. https://doi.org/10.1007/BF00252215
- Gilson L, Kuo A, Dunlap PV. 1995. AinS and a new family of autoinducer synthesis proteins. J. Bacteriol. 177: 6946-6951. https://doi.org/10.1128/jb.177.23.6946-6951.1995
- Schaefer AL, Val DL, Hanzelka BL, Cronan JE, Jr, Greenberg EP. 1996. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA 93: 9505-9509. https://doi.org/10.1073/pnas.93.18.9505
- Pearson JP, Van Delden C, Iglewski BH. 1999. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181: 1203-1210. https://doi.org/10.1128/jb.181.4.1203-1210.1999
- Evans K, Passador L, Srikumar R, Tsang E, Nezezon J, Poole K. 1998. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 180: 5443-5437. https://doi.org/10.1128/jb.180.20.5443-5447.1998
- Alcalde-Rico M, Hernando-Amado S, Blanco P, Martinez JL. 2016. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol. 7: 1483. https://doi.org/10.3389/fmicb.2016.01483
- Hanzelka BL, Parsek MR, Val DL, Dunlap PV, Cronan Jr JE, Greenberg EP. 1999. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol. 181: 5766-5770. https://doi.org/10.1128/jb.181.18.5766-5770.1999
- Parsek MR, Greenberg EP. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 97: 8789-8793. https://doi.org/10.1073/pnas.97.16.8789
- Mok KC, Wingreen NS, Bassler BL. 2003. Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J. 22: 870-881. https://doi.org/10.1093/emboj/cdg085
- Henke JM, Bassler BL. 2004. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186: 6902-6914. https://doi.org/10.1128/JB.186.20.6902-6914.2004
- Cao JG, Meighen EA. 1989. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J. Biol. Chem. 264: 21670-21676. https://doi.org/10.1016/S0021-9258(20)88238-6
- Surette MG, Miller MB, Bassler BL. 1999. Quorum sensing in Escherichia coli, Salmonella Typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96: 1639-1644. https://doi.org/10.1073/pnas.96.4.1639
- Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, et al. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545-549. https://doi.org/10.1038/415545a
- Bassler BL, Wright M, Silverman MR. 1994. Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13: 273-286. https://doi.org/10.1111/j.1365-2958.1994.tb00422.x
- Freeman JA, Bassler BL. 1999. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol. Microbiol. 31: 665-677. https://doi.org/10.1046/j.1365-2958.1999.01208.x
- Freeman JA, Bassler BL. 1999. Sequence and function of LuxU: a Two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J. Bacteriol. 181: 899-906. https://doi.org/10.1128/jb.181.3.899-906.1999
- Defoirdt T, Bossier P, Sorgeloos P, Verstraete W. 2005. The impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and Vibrio harveyi on their virulence towards gnotobiotically cultured Artemia franciscana. Environ. Microbiol. 7: 1239-1247. https://doi.org/10.1111/j.1462-2920.2005.00807.x
- Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. 2011. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35: 652-680. https://doi.org/10.1111/j.1574-6976.2011.00269.x
- Schuster M, Greenberg EP. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296: 73-81. https://doi.org/10.1016/j.ijmm.2006.01.036
- Williams P, Camara M. 2009. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 12: 182-191. https://doi.org/10.1016/j.mib.2009.01.005
- Schuster M, Lostroh CP, Ogi T, Greenberg EP. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185: 2066-2079. https://doi.org/10.1128/JB.185.7.2066-2079.2003
- Wagner VE, Bushnell D, Passador L, Brooks AI, Lglewski BH. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185: 2080-2095. https://doi.org/10.1128/JB.185.7.2080-2095.2003
- Crump JA, Collignon PJ. 2000. Intravascular catheter-associated infections. Eur. J. Clin. Microbiol. Infect. Dis. 19: 1-8. https://doi.org/10.1007/s100960050001
- Wargo MJ, Hogan DA. 2006. Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr. Opin. Microbiol. 9: 359-364. https://doi.org/10.1016/j.mib.2006.06.001
- Duan K, Dammel C, Stein J, Rabin H, Surette MG. 2003. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol. 50: 1477-1491. https://doi.org/10.1046/j.1365-2958.2003.03803.x
- Hogan DA, Vik A, Kolter R. 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54: 1212-1223. https://doi.org/10.1111/j.1365-2958.2004.04349.x
- Trejo-Hernandez A, Andrade-Dominguez A, Hernandez M, Encarnacion S. 2014. Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms. ISME J. 8: 1974-1988. https://doi.org/10.1038/ismej.2014.53
- Roux D, Gaudry S, Dreyfuss D, El-Benna J, de Prost N, Denamur E, et al. 2009. Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat. Crit. Care Med. 37: 1062-1067. https://doi.org/10.1097/CCM.0b013e31819629d2
- Cugini C, Calfee MW, Farrow III JM, Morales DK, Pesci EC, Hogan DA. 2007. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol. Microbiol. 65: 896-906. https://doi.org/10.1111/j.1365-2958.2007.05840.x
- Tashiro Y, Yawata Y, Toyofuku M, Uchiyama H, Nomura N. 2013. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes Environ. 28: 13-24. https://doi.org/10.1264/jsme2.ME12167
- Hoffman LR, Deziel E, d'Argenio DA, Lepine F, Emerson J, McNamara S, et al. 2006. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 103: 19890-19895. https://doi.org/10.1073/pnas.0606756104
- Fishbain J, Peleg AY. 2010. Treatment of Acinetobacter infections. Clin. Infect. Dis. 51: 79-84. https://doi.org/10.1086/653120
- Weinstein RA, Gaynes R, Edwards JR. 2005. Overview of nosocomial infections caused by gram-negative bacilli. Clin. Infect. Dis. 41: 848-854. https://doi.org/10.1086/432803
- Nucleo E, Steffanoni L, Fugazza G, Migliavacca R, Giacobone E, Navarra A, et al. 2009. Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol. 9: 270. https://doi.org/10.1186/1471-2180-9-270
- Tomaras AP, Dorsey CW, Edelmann RE, Actis L. 2003. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149: 3473-3484. https://doi.org/10.1099/mic.0.26541-0
- Dent LL, Marshall DR, Pratap S, Hulette RB. 2010. Multidrug resistant Acinetobacter baumannii: a descriptive study in a city hospital. BMC Infect. Dis. 10: 196. https://doi.org/10.1186/1471-2334-10-196
- Bhargava N, Sharma P, Capalash N. 2012. N-acyl homoserine lactone mediated interspecies interactions between A. baumannii and P. aeruginosa. Biofouling 28: 813-822. https://doi.org/10.1080/08927014.2012.714372
- Niu C, Clemmer KM, Bonomo RA, Rather PN. 2008. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J. Bacteriol. 190: 3386-3392. https://doi.org/10.1128/JB.01929-07
- Savka MA, Le PT, Burr TJ. 2011. LasR receptor for detection of long-chain quorum-sensing signals: identification of N-acyl-homoserine lactones encoded by the avsI locus of Agrobacterium vitis. Curr. Microbiol. 62: 101-110. https://doi.org/10.1007/s00284-010-9679-1
- Govan JR, Deretic V. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60: 539-574. https://doi.org/10.1128/mr.60.3.539-574.1996
- Tummler B, Kiewitz C. 1999. Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol. Med. Today 5: 351-358. https://doi.org/10.1016/S1357-4310(99)01506-3
- Saiman LI, Cacalano GR, Prince AL. 1990. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa. Infect. Immun. 58: 2578-2584. https://doi.org/10.1128/iai.58.8.2578-2584.1990
- Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, et al. 1984. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J. Pediatr. 104: 206-210. https://doi.org/10.1016/s0022-3476(84)80993-2
- Lewenza S, Conway B, Greenberg EP, Sokol PA. 1999. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J. Bacteriol. 181: 748-756. https://doi.org/10.1128/jb.181.3.748-756.1999
- Gotschlich A, Huber B, Geisenberger O, Togl A, Steidle A, Riedel K, et al. 2001. Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst. Appl. Microbiol. 24: 1-4. https://doi.org/10.1078/0723-2020-00013
- McKenney D, Brown KE, Allison DG. 1995. Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication. J. Bacteriol. 177: 6989-6992. https://doi.org/10.1128/jb.177.23.6989-6992.1995
- Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, et al. 2001. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147: 3249-3262. https://doi.org/10.1099/00221287-147-12-3249
- Carapetis JR, Steer AC, Mulholland EK, Weber M. 2005. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5: 685-694. https://doi.org/10.1016/S1473-3099(05)70267-X
- Jimenez JC, Federle MJ. 2014. Quorum sensing in group A Streptococcus. Front. Cell. Infect. Microbiol. 4: 127. https://doi.org/10.3389/fcimb.2014.00127
- Saroj SD, Holmer L, Berengueras JM, Jonsson AB. 2017. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165. Sci. Rep. 7: 44902. https://doi.org/10.1038/srep44902
- Saroj SD, Maudsdotter L, Tavares R, Jonsson AB. 2016. Lactobacilli interfere with Streptococcus pyogenes hemolytic activity and adherence to host epithelial cells. Front. Microbiol. 7: 1176. https://doi.org/10.3389/fmicb.2016.01176
- Banerji R, Saroj SD. 2021. Interspecies signalling affects virulence related morphological characteristics of Streptococcus pyogenes M3. FEMS Microbiol. Lett. 368: fnab079. https://doi.org/10.1093/femsle/fnab079
- Banerji R, Saroj SD. 2021. Exposure to acyl homoserine lactone enhances survival of Streptococcus pyogenes in murine macrophages. Microb. Ecol. doi: 10.1007/s00248-021-01926-1. Online ahead of print.
- Subramoni S, Venturi V. 2009. LuxR-family 'solos': bachelor sensors/regulators of signaling molecules. Microbiology 155: 1377-1385. https://doi.org/10.1099/mic.0.026849-0
- Case RJ, Labbate M, Kjelleberg S. 2008. AHL-driven quorum-sensing circuits: their frequency and function among the proteobacteria. ISME J. 2: 345-349. https://doi.org/10.1038/ismej.2008.13
- Fuqua C, Greenberg EP. 2002. Listening in on bacteria: acyl-homoserine lactone signaling. Nat. Rev. Mol. Cell Biol. 3: 685-695. https://doi.org/10.1038/nrm907
- Lintz MJ, Oinuma KI, Wysoczynski CL, Greenberg EP, Churchill MEA. 2011. Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc. Natl. Acad. Sci. USA 108: 15763-15768. https://doi.org/10.1073/pnas.1112398108
- Ahmer BM. 2004. Cell-to-cell signaling in Escherichia coli and Salmonella enterica. Mol. Microbiol. 52: 933-945. https://doi.org/10.1111/j.1365-2958.2004.04054.x
- Chugani SA, Whiteley M, Lee KM, D'Argenio D, Manoil C, Greenberg EP. 2001. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98: 2752-2757. https://doi.org/10.1073/pnas.051624298
- Janssens JC, Metzger K, Daniels R, Ptacek D, Verhoeven T, Habel LW, et al. 2007. Synthesis of N-acyl homoserine lactone analogues reveals strong activators of SdiA, the Salmonella enterica serovar Typhimurium LuxR homologue. Appl. Environ. Microbiol. 73: 535-544. https://doi.org/10.1128/AEM.01451-06
- Michael B, Smith JN, Swift S, Heffron F, Ahmer BM. 2001. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183: 5733-5742. https://doi.org/10.1128/JB.183.19.5733-5742.2001
- Yao Y, Martinez-Yamout MA, Dickerson TJ, Brogan AP, Wright PE, Dyson HJ. 2006. Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J. Mol. Biol. 355: 262-273. https://doi.org/10.1016/j.jmb.2005.10.041
- Rahmati S, Yang S, Davidson AL, Zechiedrich EL. 2002. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol. Microbiol. 43: 677-685. https://doi.org/10.1046/j.1365-2958.2002.02773.x
- Chan KG, Liu YC, Chang CY. 2015. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence. Front. Microbiol. 6: 1173. https://doi.org/10.3389/fmicb.2015.01173
- Hoang TT, Schweizer HP. 1999. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 181: 5489-5497. https://doi.org/10.1128/jb.181.17.5489-5497.1999
- Singh V, Evans GB, Lenz DH, Mason JM, Clinch K, Mee S, et al. 2005. Femtomolar transition state analogue inhibitors of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli. J. Biol. Chem. 280: 18265-18273. https://doi.org/10.1074/jbc.M414472200
- Singh V, Shi W, Almo SC, Evans GB, Furneaux RH, Tyler PC, et al. 2006. Structure and inhibition of a quorum sensing target from Streptococcus pneumoniae. Biochemistry 45: 12929-12941. https://doi.org/10.1021/bi061184i
- Taga ME, Bassler BL. 2003. Chemical communication among bacteria. Proc. Natl. Acad. Sci. USA 100(suppl 2): 14549-14554. https://doi.org/10.1073/pnas.1934514100
- Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, et al. 1996. Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol. Microbiol. 20: 127-136. https://doi.org/10.1111/j.1365-2958.1996.tb02495.x
- Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M. 1998. N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 6384-6388. https://doi.org/10.1128/jb.180.23.6384-6388.1998
- Manefield M, de Nys R, Naresh K, Roger R, Givskov M, Peter S, et al. 1999. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145: 283-291. https://doi.org/10.1099/13500872-145-2-283
- Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF. 2001. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl. Environ. Microbiol. 67: 3174-3179. https://doi.org/10.1128/AEM.67.7.3174-3179.2001
- Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK. 2002. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68: 3919-3924. https://doi.org/10.1128/AEM.68.8.3919-3924.2002
- Givskov M, Ostling J, Eberl L, Lindum PW, Christensen AB, Christiansen G, et al. 1998. Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 742-745. https://doi.org/10.1128/jb.180.3.742-745.1998
- Eberl L, Molin S, Givskov M. 1999. Surface motility of Serratia liquefaciens MG1. J. Bacteriol. 181: 1703-1712. https://doi.org/10.1128/jb.181.6.1703-1712.1999
- Bernheimer AW, Schwartz LL. 1964. Lysosomal disruption by bacterial toxins. J. Bacteriol. 87: 1100-1104. https://doi.org/10.1128/jb.87.5.1100-1104.1964
- Keiser H, Weissmann G, Bernheimer AW. 1964. STUDIES ON LYSOSOMES: IV. Solubilization of enzymes during mitochondrial swelling and disruption of lysosomes by streptolysin S and other hemolytic agents. J. Cell Biol. 22: 101-113. https://doi.org/10.1083/jcb.22.1.101
- Lowery CA, Dickerson TJ, Janda KD. 2008. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem. Soc. Rev. 37: 1337-1346. https://doi.org/10.1039/b702781h