DOI QR코드

DOI QR Code

The Antimicrobial Insect Peptide CopA3 Blocks Ethanol-Induced Liver Inflammation and Liver Cell Injury in Mice

  • Kim, Ho (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
  • Received : 2021.08.16
  • Accepted : 2022.01.04
  • Published : 2022.03.28

Abstract

Alcoholic liver disease (ALD), which encompasses alcoholic steatosis, alcoholic hepatitis, and alcoholic cirrhosis, is a major cause of morbidity and mortality worldwide. Although the economic and health impacts of ALD are clear, few advances have been made in its prevention or treatment. We recently demonstrated that the insect-derived antimicrobial peptide CopA3 exerts anti-apoptotic and anti-inflammatory activities in various cell systems, including neuronal cells and colonic epithelial cells. Here, we tested whether CopA3 inhibits ethanol-induced liver injury in mice. Mice were intraperitoneally injected with ethanol only or ethanol plus CopA3 for 24 h and then liver injury and inflammatory responses were measured. Ethanol enhanced the production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interferon (IFN)-γ, and IL-10. It also induced hepatocyte apoptosis and ballooning degeneration in hepatocytes. Notably, all these effects were eliminated or significantly reduced by CopA3 treatment. Collectively, our findings demonstrate that CopA3 ameliorates ethanol-induced liver cell damage and inflammation, suggesting the therapeutic potential of CopA3 for treating ethanol-induced liver injury.

Keywords

Acknowledgement

This work was supported by the Daejin University Research Grants in 2021.

References

  1. Chacko KR, Reinus J. 2016. Spectrum of alcoholic liver disease. Clin. Liver Dis. 20: 419-427. https://doi.org/10.1016/j.cld.2016.02.002
  2. Farooq MO, Bataller R. 2016. Pathogenesis and management of alcoholic liver disease. Dig. Dis. 34: 347-355. https://doi.org/10.1159/000444545
  3. Lackner C, Tiniakos D. 2019. Fibrosis and alcohol-related liver disease. J. Hepatol. 70: 294-304. https://doi.org/10.1016/j.jhep.2018.12.003
  4. Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, et al. 2012. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Invest. 122: 3476-3489. https://doi.org/10.1172/JCI60777
  5. Neuman MG, French SW, French BA, Seitz HK, Cohen LB, Mueller S, et al. 2014. Alcoholic and non-alcoholic steatohepatitis. Exp. Mol. Pathol. 97: 492-510. https://doi.org/10.1016/j.yexmp.2014.09.005
  6. Navarro CDC, Figueira TR, Francisco A, Dal'Bo GA, Ronchi JA, Rovani JC, et al. 2017. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice. Free Radic. Biol. Med. 113: 190-202. https://doi.org/10.1016/j.freeradbiomed.2017.09.026
  7. Tilg H, Jalan R, Kaser A, Davies NA, Offner FA, Hodges SJ, et al. 2003. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. J. Hepatol. 38: 419-425. https://doi.org/10.1016/S0168-8278(02)00442-7
  8. Gonzalez-Reimers E, Castellano-Higuera A, Aleman-Valls R, Alvarez-Arguelles H, de la Vega-Prieto MJ, Abreu-Gonzalez P, et al. 2009. Relation between body fat and liver fat accumulation and cytokine pattern in non-alcoholic patients with chronic HCV infection. Ann. Nutr. Metab. 55: 351-357. https://doi.org/10.1159/000252351
  9. Neuman MG, Benhamou JP, Malkiewicz IM, Akremi R, Shear NH, Asselah T, et al. 2001. Cytokines as predictors for sustained response and as markers for immunomodulation in patients with chronic hepatitis C. Clin. Biochem. 34: 173-182. https://doi.org/10.1016/S0009-9120(01)00212-0
  10. Singal AK, Bashar H, Anand BS, Jampana SC, Singal V, Kuo YF. 2012. Outcomes after liver transplantation for alcoholic hepatitis are similar to alcoholic cirrhosis: exploratory analysis from the UNOS database. Hepatology 55: 1398-1405. https://doi.org/10.1002/hep.25544
  11. Wilkinson PK, Rheingold JL. 1981. Arterial-venous blood alcohol concentration gradients. J. Pharmacokinet. Biopharm. 9: 279-307. https://doi.org/10.1007/BF01059268
  12. Cederbaum AI. 2012. Alcohol metabolism. Clin Liver Dis 16: 667-685. https://doi.org/10.1016/j.cld.2012.08.002
  13. Orrego H, Blake JE, Blendis LM, Medline A. 1987. Prognosis of alcoholic cirrhosis in the presence and absence of alcoholic hepatitis. Gastroenterology 92: 208-214. https://doi.org/10.1016/0016-5085(87)90861-4
  14. Shah ND, Ventura-Cots M, Abraldes JG, Alboraie M, Alfadhli A, Argemi J, et al. 2019. Alcohol-related liver disease is rarely detected at early stages compared with liver diseases of other etiologies worldwide. Clin. Gastroenterol. Hepatol. 17: 2320-2329. https://doi.org/10.1016/j.cgh.2019.01.026
  15. Varma V, Webb K, Mirza DF. 2010. Liver transplantation for alcoholic liver disease. World J. Gastroenterol. 16: 4377-4393. https://doi.org/10.3748/wjg.v16.i35.4377
  16. Kim SJ, Kim IW, Kwon YN, Yun EY, Hwang JS. 2012. Synthetic Coprisin analog peptide, D-CopA3 has antimicrobial activity and pro-apoptotic effects in human leukemia cells. J. Microbiol. Biotechnol. 22: 264-269. https://doi.org/10.4014/jmb.1110.10071
  17. Kim DH, Hwang JS, Lee IH, Nam ST, Hong J, Zhang P, et al. 2015. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291: 3209-3223. https://doi.org/10.1074/jbc.M115.682856
  18. Nam ST, Kim DH, Lee MB, Nam HJ, Kang JK, Park MJ, et al. 2014. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis. Biochem. Biophys. Res. Commun. 437: 35-40. https://doi.org/10.1016/j.bbrc.2013.06.031
  19. Nam HJ, Oh AR, Nam ST, Kang JK, Chang JS, Kim DH, et al. 2012. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation. J. Pept. Sci. 18: 650-656. https://doi.org/10.1002/psc.2437
  20. Yoon IN, Hong J, Zhang P, Hwang JS, Kim H. 2013. An analog of the antimicrobial peptide CopA5 inhibits lipopolysaccharide-induced macrophage activation. J. Microbiol. Biotechnol. 27: 350-356. https://doi.org/10.4014/jmb.1607.07065
  21. Chao X, Wang S, Zhao K, Li Y, Williams JA, Li T, et al. 2018. Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice. Gastroenterology 155: 865-879 e812. https://doi.org/10.1053/j.gastro.2018.05.027
  22. Chen MM, Palmer JL, Ippolito JA, Curtis BJ, Choudhry MA, Kovacs EJ. 2013. Intoxication by intraperitoneal injection or oral gavage equally potentiates postburn organ damage and inflammation. Mediators Inflamm. 2013: 971481. https://doi.org/10.1155/2013/971481
  23. Jamal M, Ameno K, Tanaka N, Ito A, Takakura A, Kumihashi M, et al. 2016. Ethanol and acetaldehyde after intraperitoneal administration to Aldh2-knockout mice-reflection in blood and brain levels. Neurochem. Res. 41: 1029-1034. https://doi.org/10.1007/s11064-015-1788-6
  24. Kawaguchi S, Sakuraba H, Haga T, Matsumiya T, Seya K, Endo T, et al. 2019. Melanoma differentiation-associated gene 5 positively modulates TNF-α-induced CXCL10 expression in cultured HuH-7 and HLE cells. Inflammation 42: 2095-2104. https://doi.org/10.1007/s10753-019-01073-3
  25. Sasaki Y, Asahiyama M, Tanaka T, Yamamoto S, Murakami K, Kamiya W, et al. 2020. Pemafibrate, a selective PPARα modulator, prevents non-alcoholic steatohepatitis development without reducing the hepatic triglyceride content. Sci. Rep. 10: 7818. https://doi.org/10.1038/s41598-020-64902-8
  26. Chen P, Hu M, Liu F, Yu H, Chen C. 2019. S-allyl-l-cysteine (SAC) protects hepatocytes from alcohol-induced apoptosis. FEBS. Open Bio 9: 1327-1336. https://doi.org/10.1002/2211-5463.12684
  27. Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, et al. 2016. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J. Hepatol. 64: 651-660. https://doi.org/10.1016/j.jhep.2015.11.020
  28. Neuman MG, Maor Y, Nanau RM, Melzer E, Mell H, Opris M, et al. 2015. Alcoholic liver disease: Role of cytokines. Biomolecules 5: 2023-2034. https://doi.org/10.3390/biom5032023
  29. Thakur V, Pritchard MT, McMullen MR, Nagy LE. 2006. Adiponectin normalizes LPS-stimulated TNF-α production by rat Kupffer cells after chronic ethanol feeding. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G998-1007. https://doi.org/10.1152/ajpgi.00553.2005
  30. Kawaratani H, Tsujimoto T, Douhara A, Takaya H, Moriya K, Namisaki T, et al. 2015. The effect of inflammatory cytokines in alcoholic liver disease. Mediators Inflamm. 2013: 495156. https://doi.org/10.1155/2013/495156
  31. Kawaratani H, Moriya K, Namisaki T, Uejima M, Kitade M, Takeda K, et al. 2017. Therapeutic strategies for alcoholic liver disease: Focusing on inflammation and fibrosis (Review). Int. J. Mol. Med. 40: 263-270. https://doi.org/10.3892/ijmm.2017.3015
  32. Zhou Z, Sun X, Kang YJ. 2001. Ethanol-induced apoptosis in mouse liver: Fas- and cytochrome c-mediated caspase-3 activation pathway. Am. J. Pathol. 159: 329-338. https://doi.org/10.1016/S0002-9440(10)61699-9
  33. Sakhuja, P. 2014. Pathology of alcoholic liver disease, can it be differentiated from nonalcoholic steatohepatitis? World J. Gastroenterol. 20: 16474-16479. https://doi.org/10.3748/wjg.v20.i44.16474
  34. Celli R, Zhang X. 2014. Pathology of alcoholic liver disease. J. Clin. Transl. Hepatol. 2: 103-109. https://doi.org/10.14218/JCTH.2014.00010
  35. Lackner C, Gogg-Kamerer M, Zatloukal K, Stumptner C, Brunt EM, Denk H. 2008. Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis. J. Hepatol. 48: 821-828. https://doi.org/10.1016/j.jhep.2008.01.026