DOI QR코드

DOI QR Code

Anti-Inflammatory Effects of the Chemical Compounds Obtained from Celastrus hindsii in RAW264.7 Cells

  • Pham, Thi Ngoc Anh (Department of Biotechnology, Chonnam National University) ;
  • Kim, Hae Lim (Department of Biotechnology, Chonnam National University) ;
  • Oh, Suwon (Department of Biotechnology, Chonnam National University) ;
  • Yang, Seung Hwan (Department of Biotechnology, Chonnam National University)
  • Received : 2021.11.02
  • Accepted : 2022.01.17
  • Published : 2022.03.28

Abstract

Celastrus hindsii (family Celastraceae) is located abundantly in the United States, China, and Vietnam, where it is utilized as a traditional herbal and traditional drug for the care of cancer. However, the antioxidant and anti-inflammatory effects of Celastrus hindsii extract are unknown. In our research, the antioxidant activity of Celastrus hindsii leaf extract was investigated, and then anti-inflammatory efficacy of C. hindsii extract in lipopolysaccharide (LPS)-induced RAW264.7 cells. First, our results revealed that C. hindsii extract showed powerful antioxidant capability. Moreover, the application of C. hindsii extract significantly reduced nitric oxide (NO) production without cytotoxic effects. Furthermore, C. hindsii extract reduced the generation of pro-inflammatory cytokines, like as interleukin (IL)-6, IL-1β, and TNF-α. Our results are the first to confirm the anti-inflammatory capability of C. hindsii extract in RAW264.7 cells.

Keywords

Acknowledgement

This study was financially supported by Chonnam National University (Grant number: 2020-3762).

References

  1. Xu J, Xiao C, Xu H, Yang S, Chen Z, Wang H, et al. 2021. Anti-inflammatory effects of ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS- induced RAW 264.7 macrophages. Food Chem. Toxicol. 150: 112073. https://doi.org/10.1016/j.fct.2021.112073
  2. Xin YJ, Choi S, Roh KB, Cho E, Ji H, Weon JB, et al. 2021. Anti-inflammatory activity and mechanism of Isookanin, isolated by bioassay-Gugided fractionation from Bidens pilosa L. Molecules 26: 255. https://doi.org/10.3390/molecules26020255
  3. Lim H, Park JY, Abekura F, Choi H, Kim HD, Magae J, et al. 2021. 4-O-Methylascochlorin attenuates inflammatory responses induced by lipopolysaccharide in RAW 264.7 macrophages. Int. Immunopharmacol. 90: 107184. https://doi.org/10.1016/j.intimp.2020.107184
  4. Nathan CF, Hibbs Jr JB. 1991. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3: 65-70. https://doi.org/10.1016/0952-7915(91)90079-G
  5. MacMicking J, Xie QW, Nathan C. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  6. Bogdan C, Rollinghoff M, Diefenbach A. 2000. The role nitric oxide in innate immumity. Immunol. Rev. 173: 17-26. https://doi.org/10.1034/j.1600-065X.2000.917307.x
  7. Oh S. 1995. The generation of nitric oxide and its roles in neurotransmission and neurotoxicity. Keio J. Med. 44: 53-61. https://doi.org/10.2302/kjm.44.53
  8. Grosjean SA, Arstall MA, Mitchell RN, Klappacher GW, Kelly RA, Pfeffer MA, et al. 1999. Inducible nitric oxide synthase and tumor necrosis factor in animal models of myocardial necrosis induced by coronary artery ligation or isoproterenol injection. J. Card. Fail. 5: 236-245. https://doi.org/10.1016/S1071-9164(99)90008-8
  9. O'Shea JJ, Ma A, Lipsky P. 2002. Cytokines and autoimmunity. Nat. Rev. Immunol. 2: 37-45. https://doi.org/10.1038/nri702
  10. Hyun SB, Hyun CG. 2020. Anti-inflammatory effects and their correlation with microbial community of Shindari, a traditional Jeju beverage. Fermentation 6: 87. https://doi.org/10.3390/fermentation6030087
  11. Hyun SB, Chung YC, Hyun CG. 2020. Nojirimycin suppresses inflammation via regulation of NF-κB signaling pathways. Pharmazie 75: 637-641.
  12. Kang HK, Hyun CG. 2020. Anti-inflammatory effect of d-(+)-Cycloserine through inhibition of NF-κB and MAPK signaling pathways in LPS-induced RAW 264.7 macrophages. Nat. Prod. Commun. 15: 1-11.
  13. Ly TN, Shimoyamada M, Yamauchi R. 2006. Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii benth leaves and their antioxidative activity. J. Agric. Food Chem. 54: 3786-3793. https://doi.org/10.1021/jf052743f
  14. Pham DC, Nguyen HC, Nguyen THL, Ho HL, Trinh TK, Riyaphan J, et al. 2020. Optimization of ultrasound-assisted extraction of flavonoids from Celastrus hindsii leaves using response surface methodology and evaluation of their antioxidant and antitumor activities. Biomed Res. Int. 2020: 3497107.
  15. Viet TD, Xuan TD, Van TM, Andriana Y, Rayee R, Tran HD. 2019. Comprehensive fractionation of antioxidants and GC-MS and ESI-MS fingerprints of Celastrus hindsii leaves. Medicines 6: 64. https://doi.org/10.3390/medicines6020064
  16. Luo D, Xiong S, Li QG, Jiang L, Niu QW, He LJ, et al. 2018. Terpenoids from the stems of Celastrus hindsii and their anti-RSV activities. Fitoterapia 130: 118-124. https://doi.org/10.1016/j.fitote.2018.08.018
  17. Hu XQ, Han W, Han ZZ, Liu QX, Xu XK, Fu P, et al. 2014. A new macrocyclic lactone and a new quinoflavan from Celastrus hindsii. Phytochem. Lett. 7: 169-172. https://doi.org/10.1016/j.phytol.2013.11.015
  18. Hu XQ, Han W, Han ZZ, Liu QX, Xu XK, Fu P, et al. 2014. Three new diphenylpropanes from Celastrus hindsii. Arch. Pharm. Res. 37: 1411-1415. https://doi.org/10.1007/s12272-013-0296-y
  19. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8: 96. https://doi.org/10.3390/plants8040096
  20. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5: 93. https://doi.org/10.3390/medicines5030093
  21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  22. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  23. Huang GJ, Pan CH, Liu FC, Wu TS, Wu CH. 2012. Anti-inflammatory effects of ethanolic extract of Antrodia salmonea in the lipopolysaccharide-stimulated RAW246. 7 macrophages and the λ-carrageenan-induced paw edema model. Food Chem. Toxicol. 50: 1485-1493. https://doi.org/10.1016/j.fct.2012.01.041
  24. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, et al. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47: 3954-3962. https://doi.org/10.1021/jf990146l
  25. Andrade LN, De Sousa DP. 2013. A review on anti-inflammatory activity of monoterpenes. Molecules 18: 1227-1254. https://doi.org/10.3390/molecules18011227
  26. Spivey AC, Weston M, Woodhead S. 2002. Celastraceae sesquiterpenoids: biological activity and synthesis. Chem. Soc. Rev. 31: 43-59. https://doi.org/10.1039/b000678p
  27. Sung TV, Cuong NH, Thuy TT, Ninh PT, Nhung LTH. 2008. Isolation and structural characterization of Phenolic glycoside and Triterpenes in Celastrus hindsii Benth. J. Chem. 46: 224-228.
  28. Kuo YH, Kuo LMY. 1997. Antitumour and anti-AIDS triterpenes from Celastrus hindsii. Phytochemistry 44: 1275-1281. https://doi.org/10.1016/S0031-9422(96)00719-4
  29. Rocha J, Eduardo-Figueira M, Barateiro A, Fernandes A, Brites D, Bronze R, et al. 2015. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol. 116: 398-413. https://doi.org/10.1111/bcpt.12335