DOI QR코드

DOI QR Code

Potential Probiotic Characteristics and Safety Assessment of Lactobacillus rhamnosus SKG34 Isolated from Sumbawa Mare's Milk

  • Sujaya, I Nengah (School of Public Health, Faculty of Medicine, Universitas Udayana) ;
  • Suwardana, Gede Ngurah Rsi (Department of Clinical Microbiology, Faculty of Medicine, Universitas Udayana) ;
  • Gotoh, Kazuyoshi (Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University) ;
  • Sumardika, I Wayan (Department of Pharmacology, Faculty of Medicine, Universitas Udayana) ;
  • Nocianitri, Komang Ayu (School of Food Science and Technology, Faculty of Agricultural Technology, Universitas Udayana) ;
  • Sriwidyani, Ni Putu (Department of Pathology Anatomy, Faculty of Medicine, Universitas Udayana) ;
  • Putra, I Wayan Gede Artawan Eka (School of Public Health, Faculty of Medicine, Universitas Udayana) ;
  • Sakaguchi, Masakiyo (Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University) ;
  • Fatmawati, Ni Nengah Dwi (Department of Clinical Microbiology, Faculty of Medicine, Universitas Udayana)
  • 투고 : 2021.11.09
  • 심사 : 2022.02.04
  • 발행 : 2022.03.28

초록

Lactobacillus rhamnosus SKG34 (LrSKG34), a potential probiotic strain, was successfully isolated from Sumbawa Mare's milk. Our previous studies showed that the strain is resistant to gastrointestinal conditions, possesses antioxidant activity, and lowers blood cholesterol levels. Further clarification of the potential probiotic characteristics and safety assessment are necessary. This study aimed to evaluate the adhesion of LrSKG34 to Caco-2 cell monolayers and its effect on mucosal integrity in vitro. We also examined the LrSKG34 safety profile based on antimicrobial susceptibility testing, haemolytic activity determination, Caco-2 cell monolayer translocation evaluation, and in vivo investigation of the effect of LrSKG34 on the physiology, biochemical markers, and histopathological appearance of major organs in an animal model. LrSKG34 attached to Caco-2 cell monolayers and maintained mucosal integrity in vitro. The typical resistance of lactobacilli to ciprofloxacin, gentamicin, vancomycin, trimethoprim-sulfamethoxazole, and metronidazole was confirmed for LrSKG34. No haemolytic activity was observed on blood agar plates, and no LrSKG34 translocation was observed in Caco-2 cell monolayers. Administration of LrSKG34 to Sprague-Dawley rats did not adversely affect body weight. No abnormalities in hematological parameters, serum biochemistry levels, or histopathological structures of major organs were observed in LrSKG34-treated rats. Collectively, the results implicate LrSKG34 as a promising and potentially safe probiotic candidate for further development.

키워드

과제정보

This study was supported by The World Class Research Scheme, Directorate of Research and Community Services, Directorate General for the Research Strengthening and Development, Ministry of Research, Technology and Higher Education Republic of Indonesia with the grant no. 492.36/UN14.4.A/LT/2019 and Udayana University through Competency Research Grant Scheme with grant no. 86/UN14.22/VII.10/2019. We would like to thank Professor Yukako Fujinaga (Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Japan) for providing Caco-2 cells and Professor Osamu Matsushita (Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University) for the fruitful disccussion. I Putu Bayu Mayura, M.D., Tjokorda Istri Pramitasuri, M.D., I Gusti Putu Bhuana Aristya, Gusti Putu Adi Wira Kusuma, Ida Ayu Kade Ratna Sukmadewi and Wahyu Hidayati for the technical assistance, and Heni Ruswita for the administration assistance.

참고문헌

  1. Williams NT. 2010. Probiotics. Am. J. Health-System Pharm. 67: 449-458. https://doi.org/10.2146/ajhp090168
  2. Goldin B, Gorbach S. 2008. Clinical indications for probiotics: an overview. Clin. Infect. Dis. 46: S96-S100. https://doi.org/10.1086/523333
  3. Messaoudi S, Manai M, Kergourlay G, Prevost H, Connil N, Chobert J-M, et al. 2013. Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol. 36: 296-304. https://doi.org/10.1016/j.fm.2013.05.010
  4. Gionchetti P, Rizzello F, Helwig U, Venturi A, Lammers KM, Brigidi P, et al. 2003. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology 124: 1202-1209. https://doi.org/10.1016/S0016-5085(03)00171-9
  5. Floch MH, Walker WA, Sanders ME, Nieuwdorp M, Kim AS, Brenner DA, et al. 2015. Recommendations for probiotic use-2015 update: proceedings and consensus opinion. J. Clin. Gastroenterol. 49: S69-S73. https://doi.org/10.1097/MCG.0000000000000420
  6. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514. https://doi.org/10.1038/nrgastro.2014.66
  7. Food and Agricultural Organization of the United Nations and World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. World Health Organization[online], 2001.
  8. Sujaya N, Ramona Y, Widarini NP, Suariani NP, Dwipayanti NMU, Nocianitri KA, et al. 2008. Isolasi dan karakterisasi bakteri asam laktat dari susu kuda Sumbawa. J. Vet. 9: 52-59.
  9. Sujaya IN, Dwipayanti NMU, Suariani NLP, Widarini NP, Nocianitri KA, Nursini NW. 2008. Potensi Lactobacillus spp. isolat susu kuda sumbawa sebagai probiotik. J. Vet. 9: 33-40.
  10. Nocianitri K, Antara N, Sugitha I, Sukrama I, Ramona Y, Sujaya I. 2017. The effect of two Lactobacillus rhamnosus strains on the blood lipid profile of rats fed with high fat containing diet. Int. Food Res. J. 24: 795-802.
  11. Donohue DC. 2006. Safety of probiotics. Asia Pac. J. Clin. Nutr. 15: 563-569.
  12. Meini S, Laureano R, Fani L, Tascini C, Galano A, Antonelli A, et al. 2015. Breakthrough Lactobacillus rhamnosus GG bacteremia associated with probiotic use in an adult patient with severe active ulcerative colitis: case report and review of the literature. Infection 43: 777-781. https://doi.org/10.1007/s15010-015-0798-2
  13. Fatmawati NND, Gotoh K, Mayura IPB, Nocianitri KA, Suwardana GNR, Komalasari NLGY, et al. 2020. Enhancement of intestinal epithelial barrier function by Weissella confusa F213 and Lactobacillus rhamnosus FBB81 probiotic candidates in an in vitro model of hydrogen peroxide-induced inflammatory bowel disease. BMC Res. Notes 13: 489. https://doi.org/10.1186/s13104-020-05338-1
  14. Jose NM, Bunt CR, McDowell A, Chiu JZ, Hussain MA. 2017. A study of Lactobacillus isolates' adherence to and influence on membrane integrity of human Caco-2 cells. J. Dairy Sci. 100: 7891-7896. https://doi.org/10.3168/jds.2017-12912
  15. Fatmawati NND, Goto K, Mayura IPB, Nocianitri KA, Ramona Y, Sakaguchi M, et al. 2020. Caco-2 cells monolayer as an in-vitro model for probiotic strain translocation. Bali Med. J. 9: 137-142. https://doi.org/10.15562/bmj.v9i1.1633
  16. Charteris WP, Kelly PM, Morelli L, Collins JK. 1998. Antibiotic susceptibility of potentially probiotic Lactobacillus species. J. Food Prot. 61: 1636-1643. https://doi.org/10.4315/0362-028X-61.12.1636
  17. Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. 2020. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18: e3000411. https://doi.org/10.1371/journal.pbio.3000411
  18. Parasuraman S, Raveendran R, Kesavan R. 2010. Blood sample collection in small laboratory animals. J. Pharmacol. Pharmacother. 1: 87-93. https://doi.org/10.4103/0976-500X.72350
  19. Kaynar O, Hayirli A, Yildiz A, Okumu Z, Kisa F, Bal EBB, et al. 2006. Reference values for some physiological and biochemical parameters in rats at puberty. J. Anim. Vet. Adv. 5: 1121-1128.
  20. Rosidah I, Ningsih S, Renggani TN, Efendi J, Agustini K. 2020. Profil Hematologi Tikus (Rattus norvegicus) Galur Spraguedawley Jantan Umur 7 Dan 10 Minggu. Jurnal Bioteknologi Biosains Indonesia (JBBI) 7: 136-145.
  21. Rajoka MSR, Mehwish HM, Siddiq M, Haobin Z, Zhu J, Yan L, et al. 2017. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT 84: 271-280. https://doi.org/10.1016/j.lwt.2017.05.055
  22. Bhat MI, Singh VK, Sharma D, Kapila S, Kapila R. 2019. Adherence capability and safety assessment of an indigenous probiotic strain Lactobacillus rhamnosus MTCC-5897. Microb. Pathog. 130: 120-130. https://doi.org/10.1016/j.micpath.2019.03.009
  23. Reunanen J, von Ossowski I, Hendrickx AP, Palva A, de Vos WM. 2012. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 78: 2337-2344. https://doi.org/10.1128/AEM.07047-11
  24. Blackwood BP, Yuan CY, Wood DR, Nicolas JD, Grothaus JS, Hunter CJ. 2017. Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. J. Probiotics Health 5: 159.
  25. Bhat MI, Sowmya K, Kapila S, Kapila R. 2019. Potential probiotic lactobacillus rhamnosus (MTCC-5897) inhibits Escherichia coli impaired intestinal barrier function by modulating the host tight junction gene response. Probiotics Antimicrob. Proteins 12: 1149-1160. https://doi.org/10.1007/s12602-019-09608-8
  26. Sultana R, McBain AJ, O'Neill CA. 2013. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates. Appl. Environ. Microbiol. 79: 4887-4894. https://doi.org/10.1128/AEM.00982-13
  27. Yuki T, Yoshida H, Akazawa Y, Komiya A, Sugiyama Y, Inoue S. 2011. Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J. Immunol. 187: 3230-3237. https://doi.org/10.4049/jimmunol.1100058
  28. Farhadi A, Keshavarzian A, Ranjbaran Z, Fields JZ, Banan A. 2006. The role of protein kinase C isoforms in modulating injury and repair of the intestinal barrier. J. Pharmacol. Exp. Ther. 316: 1-7. https://doi.org/10.1124/jpet.105.085449
  29. Basuroy S, Seth A, Elias B, Naren AP, Rao R. 2006. MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide. Biochem. J. 393: 69-77. https://doi.org/10.1042/BJ20050959
  30. Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P. 1999. The biosynthesis and functionality of the cell-wall of lactic acid bacteria, pp. 159-184. Lactic acid bacteria: genetics, metabolism and applications, Ed. Springer.
  31. Handwerger S, Pucci M, Volk K, Liu J, Lee M. 1994. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J. Bacteriol. 176: 260-264. https://doi.org/10.1128/jb.176.1.260-264.1994
  32. Tynkkynen S, Singh KV, Varmanen P. 1998. Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Int. J. Food Microbiol. 41: 195-204. https://doi.org/10.1016/S0168-1605(98)00051-8
  33. Ammor MS, Florez AB, Van Hoek AH, Clara G, Aarts HJ, Margolles A, et al. 2008. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J. Mol. Microbiol. Biotechnol. 14: 6-15. https://doi.org/10.1159/000106077
  34. Rozos G, Voidarou C, Stavropoulou E, Skoufos I, Tzora A, Alexopoulos A, et al. 2018. Biodiversity and microbial resistance of lactobacilli isolated from the traditional Greek cheese Kopanisti. Front. Microbiol. 9: 517. https://doi.org/10.3389/fmicb.2018.00517
  35. Borriello S, Hammes W, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M, et al. 2003. Safety of probiotics that contain lactobacilli or bifidobacteria. Clin. Infect. Dis. 36: 775-780. https://doi.org/10.1086/368080
  36. Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, et al. 2019. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl. Environ. Microbiol. 85: e01738-18.
  37. Danielsen M, Wind A. 2003. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 82: 1-11. https://doi.org/10.1016/S0168-1605(02)00254-4
  38. D'souza AL, Rajkumar C, Cooke J, Bulpitt CJ. 2002. Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ 324: 1361. https://doi.org/10.1136/bmj.324.7350.1361
  39. Aryantini NPD, Yamasaki E, Kurazono H, Sujaya IN, Urashima T, Fukuda K. 2017. In vitro safety assessments and antimicrobial activities of Lactobacillus rhamnosus strains isolated from a fermented mare's milk. Anim. Sci. J. 88: 517-525. https://doi.org/10.1111/asj.12668
  40. Rodrigues da Cunha L, Ferreira CLF, Durmaz E, Goh YJ, Sanozky-Dawes R, Klaenhammer T. 2012. Characterization of Lactobacillus gasseri isolates from a breast-fed infant. Gut Microbes 3: 15-24. https://doi.org/10.4161/gmic.19489
  41. Nagpal R, Yadav H. 2017. Bacterial translocation from the gut to the distant organs: an overview. Ann. Nutr. Metab. 71: 11-16. https://doi.org/10.1159/000479918
  42. Zawistowska-Rojek A, Tyski S. 2018. Are probiotic really safe for humans? Pol. J. Microbiol. 67: 251-258. https://doi.org/10.21307/pjm-2018-044
  43. de Matos FE, Santos TT, Burns PG, Reinheimer JA, Vinderola CG, Trindade CSF. 2020. Evaluation of Lactobacillus paracasei LP11 and Lactobacillus rhamnosus 64 potential as candidates for use as probiotics in functional foods. J. Microbiol. Biotechnol. Food Sci. 9: 1126-1133. https://doi.org/10.15414/jmbfs.2020.9.6.1126-1133
  44. Shi Y, Cui X, Gu S, Yan X, Li R, Xia S, et al. 2019. Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China. Probiotics Antimicrob. Proteins 11: 1086-1099. https://doi.org/10.1007/s12602-018-9452-5
  45. Shokryazdan P, Faseleh Jahromi M, Liang JB, Kalavathy R, Sieo CC, Ho YW. 2016. Safety assessment of two new Lactobacillus strains as probiotic for human using a rat model. PLoS One 11: e0159851. https://doi.org/10.1371/journal.pone.0159851