DOI QR코드

DOI QR Code

A Microbial Consortium for the Bioremediation of Sulfate-Rich Wastewater Originating from an Edible Oil Industry

  • Received : 2022.01.12
  • Accepted : 2022.02.04
  • Published : 2022.03.28

Abstract

The effluents from industries processing vegetable oils are extremely rich in sulfates, often exceeding the maximum concentration allowed to release them to the environment. Biological sulfate reduction is a promising alternative for the removal of sulfates in this type of wastewater, which has other particularities such as an acidic pH. The ability to reduce sulfates has been widely described for a particular bacterial group (SRB: sulfate-reducing bacteria), although the reports describing its application for the treatment of sulfate-rich industrial wastewaters are scarce. In this work, we describe the use of a natural SRB-based consortium able to remove above 30% of sulfates in the wastewater from one of the largest edible oil industries in Peru. Metataxonomic analysis was used to analyse the interdependencies established between SRB and the native microbiota present in the wastewater samples, and the performance of the consortium was quantified for different sulfate concentrations in laboratory-scale reactors. Our results pave the way towards the use of this consortium as a low-cost, sustainable alternative for the treatment of larger volumes of wastewater coming from this type of industries.

Keywords

Acknowledgement

The authors are indebted to the technical staff of ALICORP S.A.A. for their kind collaboration during the sampling process. We also thank Kristie Tanner for language correction and critical reading of this manuscript.

References

  1. Vergallo C. 2020. Nutraceutical vegetable oil nanoformulations for prevention and management of diseases. Nanomaterials 10: 1232. https://doi.org/10.3390/nano10061232
  2. Davies TD, Pickard JS, Hall KJ. 2003. Sulfate toxicity to freshwater organisms and molybdenum toxicity to rainbow trout embryos/alevins. British Columbia Mine Reclamation Symposium.
  3. Macingova E, Luptakova A. 2011. Bioremediation of sulfate-rich wastewater. In Proceedings of the 12 th International Conference on Environmental Science and Technology, pp. 3-4.
  4. World Health Organization. 2004. Sulfate in Drinking Water, Background Document for Development of WHO Guidelines for Drinking water Quality, WHO/SDE/WSH/03.04/114, Geneva.
  5. Hao OJ, Chen JM, Huang L, Buglass RL. 1996. Sulfate-reducing bacteria. Crit. Rev. Environ. Sci. Technol. 26: 155-187. https://doi.org/10.1080/10643389609388489
  6. Smet E, Lens P, Langenhove HV. 1998. Treatment of waste gases contaminated with odorous sulfur compounds. Crit. Rev. Environ. Sci. Technol. 28: 89-117. https://doi.org/10.1080/10643389891254179
  7. Sarti A, Silva AJ, Zaiat M, Foresti E. 2009. The treatment of sulfate-rich wastewater using an anaerobic sequencing batch biofilm pilot-scale reactor. Desalination 249: 241-246. https://doi.org/10.1016/j.desal.2008.08.017
  8. INAP - International Network for Acid Prevention. 2003. Treatment of Sulfate in Mine Effluents, LORAX Environmental, Inc., Utah (USA).
  9. Samer M. 2015. Biological and chemical wastewater treatment processes. Wastewater treatment engineering. 150.
  10. Kaksonen AH, Puhakka JA. 2007. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng. Life Sci. 7: 541-564. https://doi.org/10.1002/elsc.200720216
  11. Bhattacharya J, Dev S, Das B. 2017. Low-cost wastewater bioremediation technology: innovative treatment of sulfate and metal-rich wastewater. Butterworth-Heinemann.
  12. Muyzer G, Stams AJ. 2008. The ecology and biotechnology of sulfate-reducing bacteria. Nat. Rev. Microbiol. 6: 441-454. https://doi.org/10.1038/nrmicro1892
  13. Okabe S, Nielsen PH, Characklis WG. 1992. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration. Biotechnol. Bioeng. 40: 725-734. https://doi.org/10.1002/bit.260400612
  14. Martins M, Faleiro ML, Barros RJ, Verissimo AR, Costa MC. 2009. Biological sulfate reduction using food industry wastes as carbon sources. Biodegradation 20: 559-567. https://doi.org/10.1007/s10532-008-9245-8
  15. Natarajan KA, Padukone SU. 2013. Biological sulfate reduction of a sulfate-rich industrial waste liquor using sulfate reducing bacteria. Min. Metall. Explor. 30: 205-211. https://doi.org/10.1007/bf03402463
  16. Robles A, Vinardell S, Serralta J, Bernet N, Lens P, Steyer JP, et al. 2020. Anaerobic treatment of sulfate-rich wastewaters: process modeling and control. In Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering Publisher: IWA Publishing. London (United Kingdom).
  17. Sikora A, Detman A, Mielecki D, Chojnacka A, Blaszczyk M. 2019. Searching for metabolic pathways of anaerobic digestion: a useful list of the key enzymes. Anaerobic Digestion. BoD-Books on Demand, pp. 49. London (United Kingdom).
  18. Abendroth C, Latorre-Perez A, Porcar M, Simeonov C, Luschnig O, Vilanova C, et al. 2020. Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Syst. Appl. Microbiol. 43: 126024. https://doi.org/10.1016/j.syapm.2019.126024
  19. Hungate RE. 1969. A roll tube method for cultivation of strict anaerobes. pp. 117-132. JR Norris and DW Ribbons (ed.) Methods in microbiology, Vol. 3B. London (United Kingdom).
  20. Tanner K, Mancuso CP, Pereto J, Khalil AS, Vilanova C, Pascual J. 2020. Sphingomonas solaris sp. nov., isolated from a solar panel in Boston, Massachusetts. Int. J. Syst. Evol. Microbiol. 70: 1814-1821. https://doi.org/10.1099/ijsem.0.003977
  21. Pascual J, Macian MC, Arahal DR, Garay E, Pujalte MJ. 2010. Multi-locus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int. J. Syst. Evol. Microbiol. 60: 154-165. https://doi.org/10.1099/ijs.0.010702-0
  22. Baird R, Bridgewater L. 2017. Standard methods for the examination of water and wastewater. 23rd edition. Washington, D.C.: American Public Health Association.
  23. Fox J, Bouchet-Valat M. 2020. Rcmdr: R Commander. R package version 2.7-1, https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/.
  24. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41: e1. https://doi.org/10.1093/nar/gks808
  25. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37: 852-857. https://doi.org/10.1038/s41587-019-0209-9
  26. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P. et al. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41: D590-D596. https://doi.org/10.1093/nar/gks1219
  27. Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12: 1-385. https://doi.org/10.1186/1471-2105-12-1
  28. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821. https://doi.org/10.1038/nbt.2676
  29. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor, CM, et al. 2020. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38: 685-688. https://doi.org/10.1038/s41587-020-0548-6
  30. Fite A, Macfarlane GT, Cummings JH, Hopkins MJ, Kong SC, Furrie E, et al. 2004. Identification and quantitation of mucosal and faecal desulfovibrios using real time polymerase chain reaction. Gut 53: 523-529. https://doi.org/10.1136/gut.2003.031245
  31. Dar SA, Kleerebezem R, Stams AJ, Kuenen JG, Muyzer G. 2008. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl. Microbiol. Biotechnol. 78: 1045-1055. https://doi.org/10.1007/s00253-008-1391-8
  32. Moon C, Singh R, Veeravalli SS, Shanmugam SR, Chaganti SR, Lalman JA, et al. 2015. Effect of COD: SO4-2 Ratio, HRT and linoleic acid concentration on mesophilic sulfate reduction: Reactor performance and microbial population dynamics. Water 7: 2275-2292. https://doi.org/10.3390/w7052275
  33. Van Den Brand TP, Roest K, Chen GH, Brdjanovic D, Van Loosdrecht MCM. 2015. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World J. Microbiol. Biotechnol. 31: 1675-1681. https://doi.org/10.1007/s11274-015-1935-x
  34. Kuever J, Rainey FA, Widdel F. 2015. Desulfovibrio. Bergey's Manual of Systematics of Archaea and Bacteria, 1-17, USA.
  35. Nori RA, Ganjidost H. 2009. Investigation moving bed biofilm reactor using surfactant removal. J. Env. Biol. 123: 134-135.
  36. Sarti A, Zaiat M. 2011. Anaerobic treatment of sulfate-rich wastewater in an anaerobic sequential batch reactor (AnSBR) using butanol as the carbon source. J. Environ. Manag. 92: 1537-1541. https://doi.org/10.1016/j.jenvman.2011.01.009
  37. Hao OJ. 2003. Sulfate-reducing bacteria. The Handbook of Water and Wastewater Microbiology. Academic Press, London, pp. 459-469.
  38. Reis MAM, Almeida JS, Lemos PC, Carrondo MJT. 1992. Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol. Bioeng. 40: 593-600. https://doi.org/10.1002/bit.260400506
  39. Omil F, Lens P, Pol LH, Lettinga G. 1996. Effect of upward velocity and sulfide concentration on volatile fatty acid degradation in a sulfidogenic granular sludge reactor. Process Biochem. 31: 699-710. https://doi.org/10.1016/S0032-9592(96)00015-5
  40. Watanabe T, Imaoka H, Kuroda M. 1997. Neutralisation and sulfate removal of acidic water containing high strength sulfate ion by using electrodes immobilized sulfate reducing bacteria on the surface. In Proceedings of the 8th international conference on Anaerobic Digestion 3: 397-400.
  41. Lens P, van den Bosch M, Hulshoff Pol L, Lettinga G. 1998b. The use of staged sludge bed reactors for the treatment of sulfate rich wastewaters. Water Res. 32: 1178-1192. https://doi.org/10.1016/S0043-1354(97)00323-0
  42. Mohan SV, Rao NC, Prasad KK, Sarma PN. 2005. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulfate reducing bacteria (SRB) for the treatment of sulfate bearing chemical wastewater. Process Biochem. 40: 2849-2857. https://doi.org/10.1016/j.procbio.2004.12.027
  43. Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, et al. 2011. Removal of sulfate, COD and Cr (VI) in simulated and real wastewater by sulfate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour. Technol. 102: 677-682. https://doi.org/10.1016/j.biortech.2010.08.041
  44. Chelliapan S, Sallis PJ. 2015. Anaerobic treatment of high sulfate containing pharmaceutical wastewater. J. Sci. Ind. Res. 74: 526-530.
  45. Colleran E, Finnegan S, O'Keeffe RB. 1994. Anaerobic digestion of high-sulfate-content wastewater from the industrial production of citric acid. Water Sci. Technol. 30: 263. https://doi.org/10.2166/wst.1994.0623
  46. Kosinska K, Miskiewicz T. 2009. Performance of an anaerobic bioreactor with biomass recycling, continuously removing COD and sulfate from industrial wastes. Bioresour. Technol. 100: 86-90. https://doi.org/10.1016/j.biortech.2008.06.025
  47. Lens PNL, Visser A, Janssen AJH, Pol LH, Lettinga G. 1998a. Biotechnological treatment of sulfate-rich wastewaters. Crit. Rev. Environ. Sci. Technol. 28: 41-88. https://doi.org/10.1080/10643389891254160
  48. Smet E, Lens P, Langenhove HV. 1998. Treatment of waste gases contaminated with odorous sulfur compounds. Crit. Rev. Environ. Sci. Technol. 28: 89-117. https://doi.org/10.1080/10643389891254179
  49. IDNR - Iowa Department of Natural Resources. 2009. Consultation Package, Water Quality Standards Review: Chloride, Sulfate and Total Dissolved Solids.
  50. Anandkumar B, George RP, Maruthamuthu S, Parvathavarthini N, Mudali UK. 2016. Corrosion characteristics of sulfate-reducing bacteria (SRB) and the role of molecular biology in SRB studies: an overview. Corros. Rev. 34: 41-63. https://doi.org/10.1515/corrrev-2015-0055
  51. Mori T, Nonaka T, Tazaki K, Koga M, Hikosaka Y, Noda S. 1992. Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water Res. 26: 29-37. https://doi.org/10.1016/0043-1354(92)90107-F
  52. Ayoub GM, Azar N, Fadel ME, Hamad B. 2004. Assessment of hydrogen sulfide corrosion of cementitious sewer pipes: a case study. Urban Water J. 1: 39-53. https://doi.org/10.1080/15730620410001732062
  53. Camiloti PR, Oliveira GHD, Zaiat M. 2016. Sulfur recovery from wastewater using a micro-aerobic external silicone membrane reactor (ESMR). Water Air Soil Pollut. 227: 31. https://doi.org/10.1007/s11270-015-2721-y
  54. Kleinjan WE, de Keizer A, Jansse AJ. 2005. Kinetics of the chemical oxidation of polysulfide anions in aqueous solution. Water Res. 39: 4093-4100. https://doi.org/10.1016/j.watres.2005.08.006
  55. Jensen AB, Webb C. 1995. Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb. Technol. 17: 2-10. https://doi.org/10.1016/0141-0229(94)00080-B
  56. Fortuny M, Baeza JA, Gamisans X, Casas C, Lafuente J, Deshusses MA, et al. 2008. Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71: 10-17. https://doi.org/10.1016/j.chemosphere.2007.10.072
  57. Rattanapan C, Boonsawang P, Kantachote D. 2009. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater. Bioresour. Technol. 100: 125-130. https://doi.org/10.1016/j.biortech.2008.05.049
  58. Abdel-Monaem Zytoon M, Ahmad AlZahrani A, Hamed Noweir M, Ahmed El-Marakby F. 2014. Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor. Sci. World J. 2014: 675673. https://doi.org/10.1155/2014/675673
  59. Ntagia E, Chatzigiannidou I, Williamson AJ, Arends JB, Rabaey K. 2020. Homoacetogenesis and microbial community composition are shaped by pH and total sulfide concentration. Microb. Biotechnol. 13: 1026-1038. https://doi.org/10.1111/1751-7915.13546