DOI QR코드

DOI QR Code

IoT data processing techniques based on machine learning optimized for AIoT environments

AIoT 환경에 최적화된 머신러닝 기반의 IoT 데이터 처리 기법

  • Jeong, Yoon-Su (Dept. of information Communication Convergence Engineering, Mokwon University) ;
  • Kim, Yong-Tae (Dept. of Multimedia Engineering, Hannam University)
  • 정윤수 (목원대학교 정보통신융합공학부) ;
  • 김용태 (한남대학교 멀티미디어공학과)
  • Received : 2022.01.26
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

Recently, IoT-linked services have been used in various environments, and IoT and artificial intelligence technologies are being fused. However, since technologies that process IoT data stably are not fully supported, research is needed for this. In this paper, we propose a processing technique that can optimize IoT data after generating embedded vectors based on machine learning for IoT data. In the proposed technique, for processing efficiency, embedded vectorization is performed based on QR such as index of IoT data, collection location (binary values of X and Y axis coordinates), group index, type, and type. In addition, data generated by various IoT devices are integrated and managed so that load balancing can be performed in the IoT data collection process to asymmetrically link IoT data. The proposed technique processes IoT data to be orthogonalized based on hash so that IoT data can be asymmetrically grouped. In addition, interference between IoT data may be minimized because it is periodically generated and grouped according to IoT data types and characteristics. Future research plans to compare and evaluate proposed techniques in various environments that provide IoT services.

최근 IoT와 연계된 서비스들이 다양한 환경에서 활용되면서 IoT와 인공지능 기술이 융합되고 있다. 그러나, IoT 데이터를 안정적으로 처리하는 기술들이 완벽하게 지원되고 있지 않아 이를 위한 연구가 필요한 상황이다. 본 논문에서는 IoT 데이터를 머신러닝 기반으로 임베디드 벡터를 생성한 후 IoT 데이터를 최적화 할 수 있는 처리 기법을 제안한다. 제안 기법에서는 처리 효율을 위해서 IoT 데이터의 인덱스, 수집 위치(X와 Y축 좌표의 이진값), 그룹 인덱스, 타입, 종류 등을 QR 기반으로 임베디드 벡터화를 수행한다. 또한, IoT 데이터를 비대칭적으로 연계하도록 IoT 데이터 수집 과정에서 로드밸런싱을 수행할 수 있도록 다양한 IoT 장치에서 생성한 데이터를 통합 관리한다. 제안 기법은 비대칭적으로 IoT 데이터를 그룹화할 수 있도록 IoT 데이터를 해쉬기반으로 서로 직교화하도록 처리한다. 또한, IoT 데이터 종류 및 특성에 따라 주기적으로 생성 및 그룹화하기 때문에 IoT 데이터 간 간섭은 최소화할 수 있다. 향후 연구에서는 IoT 서비스를 제공하는 여러 환경에서 제안 기법을 비교 평가할 계획이다.

Keywords

References

  1. K. H. Kim. (2021). Current Status and Implications of Artificial Intelligence (AI) Introduction by Major Industries. Jincheon : KISDI.
  2. J. S. Lee. (2013). A Study on Visualizing Method and Expression of Information Design for Big Data. Journal of Basic Design & Art, 14(3), 259-269. UCI : G704-001069.2013.14.3.026
  3. G. S. Choe, Y. G. Ham & S. H. Kim. (2013) Bigdata Visualization. KSCI Review, 21(1), 33-43.
  4. Friendly, M. (2008). A brief history of data visualization. In Handbook of data visualization (pp. 15-56). Springer, Berlin, Heidelberg. DOI : 10.1007/978-3-540-33037-0_2
  5. X. Sun & N. Ansari. (2016). EdgeIoT: Mobile edge computing for the internet of things. IEEE Communications Magazine, 54(12), 22-29. https://doi.org/10.1109/MCOM.2016.1600492CM
  6. Y. J. Song & S. H. Hong. (2021). Build a Secure Smart City by using Blockchain and Digital Twin. INTERNATIONAL JOURNAL OF ADVANCED SCIENCE AND CONVERGENCE, 3(3), 9-13. DOI : 10.22662/IJASC.2021.3.3.009
  7. S. H. Sim. (2020). A Study on the Utilization and Prospect of ICT-Based Movement Support for the Mobility Handicapped. INTERNATIONAL JOURNAL OF ADVANCED SCIENCE AND CONVERGENCE, 2(4), 1-6. DOI : 10.22662/IJASC.2020.2.4.001
  8. S. H. Sim. (2020). A Study on the Prospect of Using IoMT for Disease Prevention and Managementm. INTERNATIONAL JOURNAL OF ADVANCED SCIENCE AND CONVERGENCE, 2(3), 9-14. DOI : 10.22662/IJASC.2020.2.3.009
  9. U. Imtiaz & H. M. Qusay. (2019). A Two-Level Hybrid Model for Anomalous Activity Detection in IoT Networks. Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference(CCNC), 1-6.
  10. Machine Learning Repository. (2021). https://archive.ics.uci.edu/ml/index.php
  11. NSL, http://www.nsl.cs.unb.ca/NSL-KDD.
  12. Machine Learning Repository. (2021). https://archive.ics.uci.edu/ml/datasets.php?format=&task=&att=&area=&numAtt=greater100&numIns=&type=seq&sort=nameDown&view=list.
  13. B. Ravishankar, P. Kulkarni & M. V. Vishnudas, (2020). Blockchain-based Database to Ensure Data Integrity in Cloud Computing Environments. Proceedings of the 2020 International conference on Mainstreaming Block chain Implementation (ICOMBI), 1-4.
  14. Machine Learning Repository. (2021). https://archive.ics.uci.edu/ml/datasets.php?format=&task=&att=&area=&numAtt=greater100&numIns=&type=seq&sort=nameDown&view=list.
  15. Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer, J. D. Guarnizo & Y. Elovici. (2017). Detection of unauthorized iot devices using machine learning techniques. preprint arXiv:1709.04647.