DOI QR코드

DOI QR Code

Numerical Analysis on Thermal-Induced Degradation of n-i-p Structure Perovskite Solar Cells Using SCAPS-1D

SCAPS-1D 시뮬레이션을 이용한 n-i-p 구조 페로브스카이트 태양전지의 열적 열화 원인 분석

  • Kim, Seongtak (Functional Materials and Components R&D Group, Gangwon Division, Korea Institute of Industrial Technology) ;
  • Bae, Soohyun (Photovoltaic Research Department, Korea Institute of Energy Research) ;
  • Jeong, Younghun (Functional Materials and Components R&D Group, Gangwon Division, Korea Institute of Industrial Technology) ;
  • Han, Dong-Woon (Functional Materials and Components R&D Group, Gangwon Division, Korea Institute of Industrial Technology) ;
  • Kim, Donghwan (Department of Materials Science and Engineering, Korea University) ;
  • Mo, Chan Bin (Functional Materials and Components R&D Group, Gangwon Division, Korea Institute of Industrial Technology)
  • 김성탁 (강원본부 기능성소재부품연구그룹, 한국생산기술연구원) ;
  • 배수현 (태양광연구단, 한국에너지기술연구원) ;
  • 정영훈 (강원본부 기능성소재부품연구그룹, 한국생산기술연구원) ;
  • 한동운 (강원본부 기능성소재부품연구그룹, 한국생산기술연구원) ;
  • 김동환 (신소재공학과, 고려대학교) ;
  • 모찬빈 (강원본부 기능성소재부품연구그룹, 한국생산기술연구원)
  • Received : 2022.01.14
  • Accepted : 2022.02.21
  • Published : 2022.03.31

Abstract

The long-term stability of PSCs against visual and UV light, moisture, electrical bias and high temperature is an important issue for commercialization. In particular, since the operation temperature of solar cell can rise above 85℃, a study on thermal stability is required. In this study, the cause of thermal-induced degradation of PSCs was investigated using the SCAPS-1D simulation tool. First, PSCs of TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au structure were exposed to a constant temperature of 85℃ to observe changes in conversion efficiency and quantum efficiency. Because the EQE reduction above 500 nm was remarkable, we simulated PSCs performance as a function of lifetime, doping density of perovskite and spiro-OMeTAD. Consequently, the main cause of thermal-induced degradation is considered to be the change in the perovskite doping concentration and lifetime due to ion migration of perovskite.

Keywords

Acknowledgement

본 연구는 한국생산기술연구원 기관주요사업의 지원으로 수행되었습니다(JC-21-0021).

References

  1. Kojima, A., Techima, K., Shirai, Y., Miyasaka, T., "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chenical Society, 131(17), 6050-6051 (2009). https://doi.org/10.1021/ja809598r
  2. "NREL Best Research-Cell Efficiencies", https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev211117. pdf (accessed:November, 2021).
  3. Wang, Y., Zhang, Y., Zhang, P., Zhang, W., "High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3," Physical Chemistry Chemical Physics, 17(17), 11516-11520 (2015). https://doi.org/10.1039/c5cp00448a
  4. Levine, I., Gupta, S., Brenner, T. M., Azulay, D., Millo, O., Hodes, G., Cahen, D., Balberg, I., "Mobility-Lifetime Products in MAPbI3 Films," The Journal of Physical Chemistry Letters, 7(24), 5219-5226 (2016). https://doi.org/10.1021/acs.jpclett.6b02287
  5. Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I., "Compositional engineering of perovskite materials for high-performance solar cells," Nature, 517, 476-480 (2015). https://doi.org/10.1038/nature14133
  6. Peleg, R., "HZB sets new 29.8% effciency record for perovskitesilicon tandem solar cells," https://www.perovskite-info.com/hzb-sets-new-298-efficiency-record-perovskite-silicon-tandem-solar-cells (November, 2021).
  7. VDMA, "International Technology Roadmap for Photovoltaic (ITRPV)," 12th edition (2021).
  8. Lang, F., Shargaieva, O., Brus, V. V., Neitzert, H. C., Rappich, J., Nickel, N. H., "Influence of radiation on the properties and the stability of hybrid perovskites," Advanced Materials, 30, 1702905 (2017). https://doi.org/10.1002/adma.201702905
  9. Lee, S.-W., Kim, S., Bae, S., Cho, K., Chung, T., Mundt, L. E., Lee, S., Park, S., Park, H., Schubert, M. C., Glunz, S. W., Ko, Y., Jun, Y., Kang, Y., Lee, H.-S., Kim, D., "UV degradation and recovery of perovskite solar cells," Scientific Reports, 6, 38150 (2016). https://doi.org/10.1038/srep38150
  10. Kim, N.-K., Min, Y. H., Noh, S., Cho, E., Jeong, G., Joo, M., Ahn, S.-W., Lee, J. S., Kim, S., Ihm, K., Ahn, H., Kang, Y., Lee, H.-S., Kim, D., "Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis," Scientific Reports, 7, 4645 (2017). https://doi.org/10.1038/s41598-017-04690-w
  11. Yang, J., Siempelkamp, B. D., Liu, D., Kelly, T. L., "Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques," ACS Nano, 9, 1955-1963 (2015). https://doi.org/10.1021/nn506864k
  12. Bae, S., Kim, S., Lee, S.-W., Cho, K., Park, S., Lee, S., Kang, Y., Lee, H.-S., Kim, D., "Electric-field-induced degradation of methylammonium lead iodide perovskite solar cells," Journal of Physics and chemistry letters, 7, 3091-3096 (2016). https://doi.org/10.1021/acs.jpclett.6b01176
  13. Abdelaziz, S., Zekry, A., Shaker, A., Abouelatta, M., "Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation," Optical Materials, 101, 109738 (2020). https://doi.org/10.1016/j.optmat.2020.109738
  14. Abnavi, H., Maram, D. K., Abnavi, A., "Performance analysis of several electron/hole transport layers in thin film MAPbI3-based perovskite solar cells: A simulation study," Optical Materials, 118, 111258 (2021). https://doi.org/10.1016/j.optmat.2021.111258
  15. Ouslimane, T., Et-taya, L., Elmaimouni, L., Benami, A., "Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material," Heliyon, 7, e06379 (2021). https://doi.org/10.1016/j.heliyon.2021.e06379
  16. Kim, S., Bae, S., Lee, S.-W., Cho, K., Lee, K. D., Kim, H., Park, S., Kwon, G., Ahn, S.-W., Lee, H.-M., Kang, Y., Lee, H.-S., Kim, D., "Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions," Scientific Reports, 7, 1200 (2017). https://doi.org/10.1038/s41598-017-00866-6
  17. Burgelman, M., Nollet, P., Degrave, S., "Modelling polycrystalline semiconductor solar cells," Thin Solid Films, 361-362, 527-532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1
  18. Pierret, R., "Semiconductor device fundamentals," 209, AddisonWesley (1996).
  19. Marinova, N., Tress, W., Humphry-Baker, R., Dar, M. I., Bojinov, V., Zakeeruddin, S. M., Nazeeruddin, M. K., Gratzel, M., "Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation," ACS Nano, 9, 4200-9 (2015). https://doi.org/10.1021/acsnano.5b00447
  20. Tammireddy, S., Reichert, S., An, Q., Taylor, A. D., Paulus, F., Vaynzof, Y., Deibel, C., "Temperature-dependent ionic conductivity and properties of iodine-related defects in metal halide peorvskites," ACS Energy Letters, 7, 310-319 (2022). https://doi.org/10.1021/acsenergylett.1c02179
  21. Yin, W.-J., Shi, T., Yan, Y., "Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber," Applied Physics Letters, 104, 063903 (2014). https://doi.org/10.1063/1.4864778