Acknowledgement
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number R.G.P.2/2/43.
References
- Akbari, M., Kiani, Y. and Eslami, M.R. (2015), "Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports", Acta Mech., 226(3), 897-915. https://doi.org/10.1007/s00707-014-1168-3.
- Arshad, S.H., Naeem, M.N. and Sultana, N. (2007), "Frequency analysis of functionally graded material cylindrical shells with various volume fraction laws", J. Mech. Eng. Sci., 221, 1483-1495. https://doi.org/10.1243/09544062JMES738.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. Mahmoud, S. R. (2019). The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Bert, C.W and M. Malik, (1996), "Free vibration analysis of thin cylindrical shells by the dierential quadrature method", J. Math., 46, 23-29. https://doi.org/10.1115/1.2842156.
- Bolomey, J.C. (1989), "Recent European developments in active microwave imaging for industrial, scientific, and medical applications", IEEE T. Microw. Theory, 37(12), 2109-2117. https://doi.org/10.1109/22.44129.
- Chandrasekaran, S. (2020), Design of Marine Risers with Functionally Graded Materials, Woodhead Publishing, Sawston, U.K.
- De Sousa, J.M., Bizao, R.A., Sousa Filho, V.P., Aguiar, A.L., Coluci, V.R., Pugno, N.M., Girao, E.C. and Galvao, D.S. (2019), "Elastic properties of graphyne-based nanotubes", Comput. Mater. Sci., 170, 109153. https://doi.org/10.1016/j.commatsci.2019.109153.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Ebrahimi, M.M and M.J. Najafizadeh. (2014), "Free vibration analysis of two-dimensional functionnally graded cylindrical shells", Appl. Math. Modell., 38, 308-324. https://doi.org/10.1016/j.apm.2013.06.015.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Golpayegani, I.F and Jafari, A.A. (2017), "Critical speed analysis of bi-layered rotating cylindrical shells made of functionally graded materials", Int. J. Mech., 23, 77-89.
- Gupta, A. and Talha, M. (2015), "Recent development in modeling and analysis of functionally graded materials and structures", Prog. Aerosp. Sci., 79, 1-14. https://doi.org/10.1016/j.paerosci.2015.07.001.
- Hussain, M. and Naeem, M.N. (2019), "Eects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
- Isvandzibaei, M.R., Jamaluddin, H. and Hamzah, R.R. (2014), "Effects of uniform interior pressure distribution on vibration of FGM cylindrical shell with rings support based on first-order theory subjected to ten boundary conditions", Acta Mech., 225(7), 2085-2109. https://doi.org/10.1007/s00707-013-1079-8.
- Kiani Y.A.S.S.E.R. and Eslami, M.R. (2013), "Thermomechanical buckling oftemperature-dependent FGM beams", Latin Am. J. Solid Struct., 10, 223-246. https://doi.org/10.1590/S1679-78252013000200001.
- Lam, K.Y. and Loy, C.T. (1985), "Effects of boundary conditions on frequencies of a multi-layered cylindrical shell", J. Sound Vib. 188, 363-384. https://doi.org/10.1006/jsvi.1995.0599.
- Loy, C.T., Lam, K.Y. and J.N. Reddy. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309- 324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Mahamood, R.M. and Akinlabi, E.T. (2017), Types of Functionally Graded Materials and Their Areas of Application in Functionally Graded Materials, Springer Cham, Denmark.
- Mahamood, R.M., Akinlabi, E.T., Shukla, M. and Pityana, S.L. (2012), "Functionally graded material: An overview", Proceedings of the World Congress on Engineering 2012 Vol III (WCE 2012), London, U.K., July.
- Malekzadeh, P. and Heydarpour, Y. (2012). "Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment", Compos. Struct., 94(9), 2971-2981. https://doi.org/10.1016/j.compstruct.2012.04.011.
- Markworth, A.J., Ramesh, K.S. and Parks, W.P. (1995), "Modelling studies applied to functionally graded materials", J. Mater. Sci., 30(9), 2183-2193. https://doi.org/10.1007/BF01184560.
- Muller, P., Mognol, P. and Hascoet, J.Y. (2013), "Modeling and control of a direct laser powder deposition process for Functionally Graded Materials (FGM) parts manufacturing", J. Mater. Proc. Technol., 213(5), 685-692. https://doi.org/10.1016/j.jmatprotec.2012.11.020Get.
- Naeem, S., Bunker, D.E., Hector, A., Loreau, M. and Perrings, C. (2009), Biodiversity, Ecosystem Functioning And Human Wellbeing: An Ecological And Economic Perspective, Oxford University Press, Oxford, U.K.
- Niino, M., Kumakawa, A., Watanabe, R. and Doi, Y. (1984), "Fabrication of a high pressure thrust chamber by the CIP forming method", Proceedings of the 20th Joint Propulsion Conference, Ohio, U.S.A., June.
- Pradhan, S.C., Loy, C.T., Lam, K.Y. and Reddy, J.N. (2000), "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61(1), 111-129. https://doi.org/10.1016/S0003-682X(99)00063-8.
- Rahimi, G.H., R. Ansari and M. Hemmatnezhad. (2011), "Vibration of functionally graded cylindrical shells with ring support", ScientiaIranica, 18(6), 1313-1320. https://doi.org/10.1016/j.scient.2011.11.026.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
- Schollhammer, D. and Fries, T.P. (2019), "Kirchhoff-Love shell theory based on tangential differential calculus" Comput. Mech., 64(1), 113-131. https://doi.org/10.1007/s00466-018-1659-5.
- Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Wetherhold, R.C., Seelman, S. and Wang, J. (1996), "The use of functionally graded materials to eliminate or control thermal deformation", Compos. Sci. Technol., 56, 1099-1104. https://doi.org/10.1016/0266-3538(96)00075-9.
- Zhang, X.M. (2002), "Frequency analysis of submerged cylindrical shells with the wave propagation approach", Int. J. Mech. Sci., 44, 1259-1273. https://doi.org/10.1016/S0020-7403(02)00059-0.