References
- Ackerman, D.M., Skoulidas, A.I., Sholl, D.S. and Johnson, J.K. (2003), "Diffusivities of Ar and Ne in carbon nanotubes", Mol. Simulat., 29(10-11), 677-684. https://doi.org/10.1080/0892702031000103239.
- Alexiadis, A. and Kassinos, S. (2008), "Influence of water model and nanotube rigidity on the density of water in carbon nanotubes", Chem. Eng. Sci., 63(10), 2793-2797. https://doi.org/10.1016/j.ces.2008.03.004.
- Ang, E.Y.M., Ng, T.Y., Yeo, J., Liu, Z., Lin, R. and Geethalakshmi, K.R. (2019), "Effects of oscillating pressure on desalination performance of transverse flow CNT membrane", Desalination, 451, 35-44. https://doi.org/10.1016/j.desal.2018.03.029.
- Arash, B. and Wang, Q. (2014), "Molecular separation with carbon nanotubes", Comput. Mater. Sci., 90, 50-55. https://doi.org/10.1016/j.commatsci.2014.04.012.
- Barclay, P. L. and Lukes, J. R. (2016), "Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion", Phys. Rev. E, 94(6), 063303. https://doi.org/10.1103/PhysRevE.94.063303.
- Barzegar, H.R., Yan, A., Coh, S., Gracia-Espino, E., Ojeda-Aristizabal, C., Dunn, G., Zettl, A. (2017), "Spontaneous twisting of a collapsed carbon nanotube", Nano Res., 10(6), 1942-1949. https://doi.org/10.1007/s12274-016-1380-7.
- Brenner, D.W. (1990), "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films", Phys. Rev. B, 42(15), 9458-9471. https://doi.org/10.1103/PhysRevB.42.9458
- Cannon, J. and Hess, O. (2010), "Fundamental dynamics of flow through carbon nanotube membranes", Microfluid. Nanofluid., 8(1), 21-31. https://doi.org/10.1007/s10404-009-0446-1.
- Cao, B.Y., Chen, M. and Guo, Z.Y. (2006), "Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation", Phys. Rev. E, 74(6), 066311. https://doi.org/10.1103/PhysRevE.74.066311.
- Chen, X., Cao, G., Han, A., Punyamurtula, V.K., Liu, L., Culligan, P.J., and Qiao, Y. (2008), "Nanoscale fluid transport: Size and rate effects", Nano Lett., 8(9), 2988-2992. https://doi.org/10.1021/nl802046b.
- Chu, H., Zhang, Z., Liu, Y. and Leng, J. (2015), Fillers and Reinforcements for Advanced Nanocomposites, Woodhead Publishing, Cambridge, U.K.
- Derakhshan, S., Rezaee, M. and Sarrafha, H. (2015), "A molecular dynamics study of description models for shear viscosity in nanochannels: mixtures and effect of temperature", Nanosc. Microsc. Therm., 19(3), 206-220. https://doi.org/10.1080/15567265.2015.1065527.
- Docherty, S.Y., Nicholls, W.D., Borg, M.K., Lockerby, D.A. and Reese, J.M. (2014), "Boundary conditions for molecular dynamics simulations of water transport through nanotubes", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(1), 186-195. https://doi.org/10.1177/0954406213481760.
- Feng, J., Chen, P., Zheng, D. and Zhong, W. (2018), "Transport diffusion in deformed carbon nanotubes", Physica A, 493, 155-161. https://doi.org/10.1016/j.physa.2017.10.014.
- He, J.X., Lu, H.J., Liu, Y., Wu, F.M., Nie, X.C., Zhou, X.Y. and Chen, Y.Y. (2012), "Asymmetry of the water flux induced by the deformation of a nanotube", Chinese Phys. B, 21(5), 054703. https://doi.org/10.1088/1674-1056/21/5/054703.
- Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A, 31(3), 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695.
- Huang, C., Nandakumar, K., Choi, P.Y.K. and Kostiuk, L.W. (2006), "Molecular dynamics simulation of a pressure-driven liquid transport process in a cylindrical nanopore using two self-adjusting plates", J. Chem. Phys., 124(23), 234701. https://doi.org/10.1063/1.2209236.
- Hummer, G., Rasaiah, J. and Noworyta, J. (2001), "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, 414(6860), 188. https://doi.org/10.1038/35102535.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0 .
- Kannam, S.K., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013), "How fast does water flow in carbon nanotubes?", J. Chem. Phys., 138(9), 094701. https://doi.org/10.1063/1.4793396.
- Kaukonen, M., Gulans, A., Havu, P. and Kauppinen, E. (2012), "Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations", J. Comput. Chem., 33(6), 652-658. https://doi.org/10.1002/jcc.22884.
- Kohler, M.H., Bordin, J.R., de Matos, C.F. and Barbosa, M.C. (2019), "Water in nanotubes: The surface effect", Chem. Eng. Sci., 203, 54-67. https://doi.org/10.1016/j.ces.2019.03.062.
- Li, P., Wang, C., Zhang, Y. and Wei, F. (2014), "Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on Carbon Nanotubes", Small, 10, 4543-4561. https://doi.org/10.1002/smll.201401553.
- Li, S., Park, J.G., Liang, Z., Siegrist, T., Liu, T., Zhang, M., and Zhang, C. (2012), "In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching", Carbon, 50(10), 3859-3867. https://doi.org/10.1016/j.carbon.2012.04.029.
- Liakopoulos, A., Sofos, F. and Karakasidis, T.E. (2016), "Friction factor in nanochannel flows", Microfluid. Nanofluid., 20(1), 1-7. https://doi.org/10.1007/S10404-015-1699-5.
- Liakopoulos, A., Sofos, F. and Karakasidis, T.E. (2017), "Darcy-Weisbach friction factor at the nanoscale: From atomistic calculations to continuum models", Phys. Fluids, 29(5), 052003. https://doi.org/10.1063/1.4982667.
- Lu, H., Li, J., Gong, X., Wan, R., Zeng, L. and Fang, H. (2008), "Water permeation and wavelike density distributions inside narrow nanochannels", Phys. Rev. B, 77(17), 174115. https://doi.org/10.1103/PhysRevB.77.174115.
- Madani, S.Y., Naderi, N., Dissanayake, O., Tan, A. and Seifalian, A.M. (2011), "A new era of cancer treatment: carbon nanotubes as drug delivery tools", Int. J. Nanomed., 6, 2963-2979. https://doi.org/10.2147/ijn.s16923.
- Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Nanoscale hydrodynamics-enhanced flow in carbon nanotubes", Nature, 438(7064), 44. https://doi.org/10.1038/43844a.
- McGinnis, R.L., Reimund, K., Ren, J., Xia, L., Chowdhury, M.R., Sun, X., and Freeman, B. D. (2018), "Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores", Sci. Adv., 4(3), 1700938. https://doi.org/10.1126/sciadv.1700938.
- Mendonca, B.H.S., de Freitas, D.N., Kohler, M.H., Batista, R.J.C., Barbosa, M.C. and de Oliveira, A.B. (2018), "Diffusion behavior of water confined in deformed carbon nanotubes", Physica A, 517, 491-498. https://doi.org/10.1016/j.physa.2018.11.042 .
- Mendonca, B.H.S., Ternes, P., Salcedo, E., De Oliveira, A.B. and Barbosa, M.C. (2020), "Water diffusion in rough carbon nanotubes", J. Chem. Phys., 152(2), 024708. https://doi.org/10.1063/1.5129394.
- Narang, J. (2019), "Multiwalled carbon nanotube wrapped nanoflake graphene composites for sensitive biosensing of leviteracetum, RSC Adv., 9(33), 18814. https://doi.org/10.1039/c9ra90046b.
- Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81(1), 511-519. https://doi.org/10.1063/1.447334.
- Panwar, N., Soehartono, A.M., Chan, K.K., Zeng, S., Xu, G., Qu, J., and Chen, X. (2019), "Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery", Chemical Reviews, 119, 9559-9656. https://doi.org/10.1021/acs.chemrev.9b00099.
- Perez-Sanchez, M. (2017), "Methodology for energy efficiency improvement analysis in pressurized irrigation networks. Practical application", Ph.D. Dissertation, Universidad Politecnica de Valencia, Spain.
- Razmkhah, M., Ahmadpour, A., Mosavian, M. T. H. and Moosavi, F. (2017), "What is the effect of carbon nanotube shape on desalination process? A simulation approach", Desalination, 407, 103-115. https://doi.org/10.1016/j.desal.2016.12.019.
- Rezaee, M. and Ghassemi, H. (2020), "Anomalous behavior of fluid flow through thin carbon nanotubes", Theor. Comp. Fluid Dyn., 34(1-2), 177-186. https://doi.org/10.1007/s00162-020-00521-3.
- Ritos, K., Borg, M.K., Lockerby, D.A., Emerson, D.R. and Reese, J.M. (2015), "Hybrid molecular-continuum simulations of water flow through carbon nanotube membranes of realistic thickness", Microfluid. Nanofluid., 19(5), 997-1010. https://doi.org/10.1007/s10404-015-1617-x.
- Robinson, F., Shahbabaei, M. and Kim, D. (2019), "Deformation effect on water transport through nanotubes", Energies, 12(23), 4424. https://doi.org/10.3390/en12234424.
- Shen, J. W., Kong, Z., Zhang, L. and Liang, L. (2016), "Controlled interval of aligned carbon nanotubes arrays for water desalination: A molecular dynamics simulation study", Desalination, 395, 28-32. https://doi.org/10.1016/j.desal.2016.05.024.
- Shima, H. (2012), "Buckling of carbon nanotubes: A state of the art review", Materials, 5(1), 47-84. https://doi.org/10.3390/ma5010047.
- Sofos, F., Karakasidis, T.E. and Liakopoulos, A. (2016), "Fluid structure and system dynamics in nanodevices for water desalination", Desalin. Water Treat., 57(25), 11561-11571. https://doi.org/10.1080/19443994.2015.1049966.
- Stukowski, A. (2010), "Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool", Model. Simul. Mater. Sci., 18(1), 015012. https://doi.org/10.1088/0965-0393/18/1/015012.
- Suga, K., Mori, Y., Moritani, R. and Kaneda, M. (2018), "Combined effects of molecular geometry and nanoconfinement on liquid flows through carbon nanotubes", Phys. Rev. E, 97(5), 053109. https://doi.org/10.1103/PhysRevE.97.053109.
- Tersoff, J. (1988), "Empirical interatomic potential for carbon, with applications to amorphous carbon", Phys. Rev. Lett., 61(25), 2879-2882. https://doi.org/10.1103/PhysRevLett.61.2879.
- Wang, S., Liang, Z., Wang, B. and Zhang, C. (2006), "Statistical characterization of single-wall carbon nanotube length distribution", Nanotechnology, 17(3), 634-639. https://doi.org/10.1088/0957-4484/17/3/003.
- Wang, Y., He, Z., Gupta, K.M., Shi, Q. and Lu, R. (2017), "Molecular dynamics study on water desalination through functionalized nanoporous graphene", Carbon, 116, 120-127. https://doi.org/10.1016/j.carbon.2017.01.099.
- Wen, J., Zheng, D. and Zhong, W. (2015), "Shape-dependent collective diffusion coefficient of multi-layers graphene nanopores", RSC Adv., 5(120), 99573-99576. https://doi.org/10.1039/C5RA21604D.
- Wu, G., Tan, P., Wang, D., Li, Z., Peng, L., Hu, Y., and Chen, W. (2017), "High-performance supercapacitors based on electro-chemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes", Sci. Rep., 7(1), 1-8. https://doi.org/10.1038/srep43676.
- Yildiz, O. and Bradford, P.D. (2013), "Aligned carbon nanotube sheet high efficiency particulate air filters", Carbon, 64, 295-304. https://doi.org/10.1016/j.carbon.2013.07.066.
- Yuan, D., Lin, W., Guo, R., Wong, C.P. and Das, S. (2012), "The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition", Nanotechnology, 23(21), 215303. https://doi.org/10.1088/0957-4484/23/21/215303.
- Zhang, R. and Wei, F. (2019), "High-efficiency particulate air filters based on carbon nanotubes", Nanotube Superfiber Mater., 2019, 643-666. https://doi.org/10.1016/B978-0-12-812667-7.00026-4.
- Zhou, X., Wang, C., Wu, F., Feng, M., Li, J., Lu, H. and Zhou, R. (2013), "The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube", J. Chem. Phys., 138(20), https://doi.org/10.1063/1.4807383.
- Zhou, X., Wu, F., Kou, J., Nie, X., Liu, Y. and Lu, H. (2013), "Vibrating-charge-driven water pump controlled by the deformation of the carbon nanotube", J. Phys. Chem. B, 117(39), 11681-11686. https://doi.org/10.1021/jp405036c.