DOI QR코드

DOI QR Code

Fluid flow dynamics in deformed carbon nanotubes with unaffected cross section

  • Rezaee, Mohammad (School of Mechanical Engineering, Iran University of Science & Technology) ;
  • Yeganegi, Arian (School of Mechanical Engineering, Iran University of Science & Technology) ;
  • Namvarpour, Mohammad (School of Mechanical Engineering, Iran University of Science & Technology) ;
  • Ghassemi, Hojat (School of Mechanical Engineering, Iran University of Science & Technology)
  • Received : 2021.01.18
  • Accepted : 2021.10.13
  • Published : 2022.03.25

Abstract

Numerical modelling of an integrated Carbon NanoTube (CNT) membrane is only achievable if probable deformations and realistic alterations from a perfect CNT membrane are taken into account. Considering the possible forms of CNTs, bending is one of the most probable deformations in these high aspect ratio nanostructures. Hence, investigation of effect associated with bent CNTs are of great interest. In the present study, molecular dynamics simulation is utilized to investigate fluid flow dynamics in deformed CNT membranes, specifically when the tube cross section is not affected. Bending in armchair (5,5) CNT was simulated using Tersoff potential, prior to flow rate investigation. Also, to study effect of inclined entry of the CNT to the membrane wall, argon flow through generated inclined CNT membranes is examined. The results show significant variation in both cases, which can be interpreted as counter-intuitive, since the cross section of the CNT was not deformed in either case. The distribution of fluid-fluid and fluid-wall interaction potential is investigated to explain the anomalous behavior of the flow rate versus bending angle.

Keywords

References

  1. Ackerman, D.M., Skoulidas, A.I., Sholl, D.S. and Johnson, J.K. (2003), "Diffusivities of Ar and Ne in carbon nanotubes", Mol. Simulat., 29(10-11), 677-684. https://doi.org/10.1080/0892702031000103239.
  2. Alexiadis, A. and Kassinos, S. (2008), "Influence of water model and nanotube rigidity on the density of water in carbon nanotubes", Chem. Eng. Sci., 63(10), 2793-2797. https://doi.org/10.1016/j.ces.2008.03.004.
  3. Ang, E.Y.M., Ng, T.Y., Yeo, J., Liu, Z., Lin, R. and Geethalakshmi, K.R. (2019), "Effects of oscillating pressure on desalination performance of transverse flow CNT membrane", Desalination, 451, 35-44. https://doi.org/10.1016/j.desal.2018.03.029.
  4. Arash, B. and Wang, Q. (2014), "Molecular separation with carbon nanotubes", Comput. Mater. Sci., 90, 50-55. https://doi.org/10.1016/j.commatsci.2014.04.012.
  5. Barclay, P. L. and Lukes, J. R. (2016), "Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion", Phys. Rev. E, 94(6), 063303. https://doi.org/10.1103/PhysRevE.94.063303.
  6. Barzegar, H.R., Yan, A., Coh, S., Gracia-Espino, E., Ojeda-Aristizabal, C., Dunn, G., Zettl, A. (2017), "Spontaneous twisting of a collapsed carbon nanotube", Nano Res., 10(6), 1942-1949. https://doi.org/10.1007/s12274-016-1380-7.
  7. Brenner, D.W. (1990), "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films", Phys. Rev. B, 42(15), 9458-9471. https://doi.org/10.1103/PhysRevB.42.9458
  8. Cannon, J. and Hess, O. (2010), "Fundamental dynamics of flow through carbon nanotube membranes", Microfluid. Nanofluid., 8(1), 21-31. https://doi.org/10.1007/s10404-009-0446-1.
  9. Cao, B.Y., Chen, M. and Guo, Z.Y. (2006), "Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation", Phys. Rev. E, 74(6), 066311. https://doi.org/10.1103/PhysRevE.74.066311.
  10. Chen, X., Cao, G., Han, A., Punyamurtula, V.K., Liu, L., Culligan, P.J., and Qiao, Y. (2008), "Nanoscale fluid transport: Size and rate effects", Nano Lett., 8(9), 2988-2992. https://doi.org/10.1021/nl802046b.
  11. Chu, H., Zhang, Z., Liu, Y. and Leng, J. (2015), Fillers and Reinforcements for Advanced Nanocomposites, Woodhead Publishing, Cambridge, U.K.
  12. Derakhshan, S., Rezaee, M. and Sarrafha, H. (2015), "A molecular dynamics study of description models for shear viscosity in nanochannels: mixtures and effect of temperature", Nanosc. Microsc. Therm., 19(3), 206-220. https://doi.org/10.1080/15567265.2015.1065527.
  13. Docherty, S.Y., Nicholls, W.D., Borg, M.K., Lockerby, D.A. and Reese, J.M. (2014), "Boundary conditions for molecular dynamics simulations of water transport through nanotubes", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(1), 186-195. https://doi.org/10.1177/0954406213481760.
  14. Feng, J., Chen, P., Zheng, D. and Zhong, W. (2018), "Transport diffusion in deformed carbon nanotubes", Physica A, 493, 155-161. https://doi.org/10.1016/j.physa.2017.10.014.
  15. He, J.X., Lu, H.J., Liu, Y., Wu, F.M., Nie, X.C., Zhou, X.Y. and Chen, Y.Y. (2012), "Asymmetry of the water flux induced by the deformation of a nanotube", Chinese Phys. B, 21(5), 054703. https://doi.org/10.1088/1674-1056/21/5/054703.
  16. Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A, 31(3), 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695.
  17. Huang, C., Nandakumar, K., Choi, P.Y.K. and Kostiuk, L.W. (2006), "Molecular dynamics simulation of a pressure-driven liquid transport process in a cylindrical nanopore using two self-adjusting plates", J. Chem. Phys., 124(23), 234701. https://doi.org/10.1063/1.2209236.
  18. Hummer, G., Rasaiah, J. and Noworyta, J. (2001), "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, 414(6860), 188. https://doi.org/10.1038/35102535.
  19. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0 .
  20. Kannam, S.K., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013), "How fast does water flow in carbon nanotubes?", J. Chem. Phys., 138(9), 094701. https://doi.org/10.1063/1.4793396.
  21. Kaukonen, M., Gulans, A., Havu, P. and Kauppinen, E. (2012), "Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations", J. Comput. Chem., 33(6), 652-658. https://doi.org/10.1002/jcc.22884.
  22. Kohler, M.H., Bordin, J.R., de Matos, C.F. and Barbosa, M.C. (2019), "Water in nanotubes: The surface effect", Chem. Eng. Sci., 203, 54-67. https://doi.org/10.1016/j.ces.2019.03.062.
  23. Li, P., Wang, C., Zhang, Y. and Wei, F. (2014), "Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on Carbon Nanotubes", Small, 10, 4543-4561. https://doi.org/10.1002/smll.201401553.
  24. Li, S., Park, J.G., Liang, Z., Siegrist, T., Liu, T., Zhang, M., and Zhang, C. (2012), "In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching", Carbon, 50(10), 3859-3867. https://doi.org/10.1016/j.carbon.2012.04.029.
  25. Liakopoulos, A., Sofos, F. and Karakasidis, T.E. (2016), "Friction factor in nanochannel flows", Microfluid. Nanofluid., 20(1), 1-7. https://doi.org/10.1007/S10404-015-1699-5.
  26. Liakopoulos, A., Sofos, F. and Karakasidis, T.E. (2017), "Darcy-Weisbach friction factor at the nanoscale: From atomistic calculations to continuum models", Phys. Fluids, 29(5), 052003. https://doi.org/10.1063/1.4982667.
  27. Lu, H., Li, J., Gong, X., Wan, R., Zeng, L. and Fang, H. (2008), "Water permeation and wavelike density distributions inside narrow nanochannels", Phys. Rev. B, 77(17), 174115. https://doi.org/10.1103/PhysRevB.77.174115.
  28. Madani, S.Y., Naderi, N., Dissanayake, O., Tan, A. and Seifalian, A.M. (2011), "A new era of cancer treatment: carbon nanotubes as drug delivery tools", Int. J. Nanomed., 6, 2963-2979. https://doi.org/10.2147/ijn.s16923.
  29. Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Nanoscale hydrodynamics-enhanced flow in carbon nanotubes", Nature, 438(7064), 44. https://doi.org/10.1038/43844a.
  30. McGinnis, R.L., Reimund, K., Ren, J., Xia, L., Chowdhury, M.R., Sun, X., and Freeman, B. D. (2018), "Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores", Sci. Adv., 4(3), 1700938. https://doi.org/10.1126/sciadv.1700938.
  31. Mendonca, B.H.S., de Freitas, D.N., Kohler, M.H., Batista, R.J.C., Barbosa, M.C. and de Oliveira, A.B. (2018), "Diffusion behavior of water confined in deformed carbon nanotubes", Physica A, 517, 491-498. https://doi.org/10.1016/j.physa.2018.11.042 .
  32. Mendonca, B.H.S., Ternes, P., Salcedo, E., De Oliveira, A.B. and Barbosa, M.C. (2020), "Water diffusion in rough carbon nanotubes", J. Chem. Phys., 152(2), 024708. https://doi.org/10.1063/1.5129394.
  33. Narang, J. (2019), "Multiwalled carbon nanotube wrapped nanoflake graphene composites for sensitive biosensing of leviteracetum, RSC Adv., 9(33), 18814. https://doi.org/10.1039/c9ra90046b.
  34. Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81(1), 511-519. https://doi.org/10.1063/1.447334.
  35. Panwar, N., Soehartono, A.M., Chan, K.K., Zeng, S., Xu, G., Qu, J., and Chen, X. (2019), "Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery", Chemical Reviews, 119, 9559-9656. https://doi.org/10.1021/acs.chemrev.9b00099.
  36. Perez-Sanchez, M. (2017), "Methodology for energy efficiency improvement analysis in pressurized irrigation networks. Practical application", Ph.D. Dissertation, Universidad Politecnica de Valencia, Spain.
  37. Razmkhah, M., Ahmadpour, A., Mosavian, M. T. H. and Moosavi, F. (2017), "What is the effect of carbon nanotube shape on desalination process? A simulation approach", Desalination, 407, 103-115. https://doi.org/10.1016/j.desal.2016.12.019.
  38. Rezaee, M. and Ghassemi, H. (2020), "Anomalous behavior of fluid flow through thin carbon nanotubes", Theor. Comp. Fluid Dyn., 34(1-2), 177-186. https://doi.org/10.1007/s00162-020-00521-3.
  39. Ritos, K., Borg, M.K., Lockerby, D.A., Emerson, D.R. and Reese, J.M. (2015), "Hybrid molecular-continuum simulations of water flow through carbon nanotube membranes of realistic thickness", Microfluid. Nanofluid., 19(5), 997-1010. https://doi.org/10.1007/s10404-015-1617-x.
  40. Robinson, F., Shahbabaei, M. and Kim, D. (2019), "Deformation effect on water transport through nanotubes", Energies, 12(23), 4424. https://doi.org/10.3390/en12234424.
  41. Shen, J. W., Kong, Z., Zhang, L. and Liang, L. (2016), "Controlled interval of aligned carbon nanotubes arrays for water desalination: A molecular dynamics simulation study", Desalination, 395, 28-32. https://doi.org/10.1016/j.desal.2016.05.024.
  42. Shima, H. (2012), "Buckling of carbon nanotubes: A state of the art review", Materials, 5(1), 47-84. https://doi.org/10.3390/ma5010047.
  43. Sofos, F., Karakasidis, T.E. and Liakopoulos, A. (2016), "Fluid structure and system dynamics in nanodevices for water desalination", Desalin. Water Treat., 57(25), 11561-11571. https://doi.org/10.1080/19443994.2015.1049966.
  44. Stukowski, A. (2010), "Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool", Model. Simul. Mater. Sci., 18(1), 015012. https://doi.org/10.1088/0965-0393/18/1/015012.
  45. Suga, K., Mori, Y., Moritani, R. and Kaneda, M. (2018), "Combined effects of molecular geometry and nanoconfinement on liquid flows through carbon nanotubes", Phys. Rev. E, 97(5), 053109. https://doi.org/10.1103/PhysRevE.97.053109.
  46. Tersoff, J. (1988), "Empirical interatomic potential for carbon, with applications to amorphous carbon", Phys. Rev. Lett., 61(25), 2879-2882. https://doi.org/10.1103/PhysRevLett.61.2879.
  47. Wang, S., Liang, Z., Wang, B. and Zhang, C. (2006), "Statistical characterization of single-wall carbon nanotube length distribution", Nanotechnology, 17(3), 634-639. https://doi.org/10.1088/0957-4484/17/3/003.
  48. Wang, Y., He, Z., Gupta, K.M., Shi, Q. and Lu, R. (2017), "Molecular dynamics study on water desalination through functionalized nanoporous graphene", Carbon, 116, 120-127. https://doi.org/10.1016/j.carbon.2017.01.099.
  49. Wen, J., Zheng, D. and Zhong, W. (2015), "Shape-dependent collective diffusion coefficient of multi-layers graphene nanopores", RSC Adv., 5(120), 99573-99576. https://doi.org/10.1039/C5RA21604D.
  50. Wu, G., Tan, P., Wang, D., Li, Z., Peng, L., Hu, Y., and Chen, W. (2017), "High-performance supercapacitors based on electro-chemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes", Sci. Rep., 7(1), 1-8. https://doi.org/10.1038/srep43676.
  51. Yildiz, O. and Bradford, P.D. (2013), "Aligned carbon nanotube sheet high efficiency particulate air filters", Carbon, 64, 295-304. https://doi.org/10.1016/j.carbon.2013.07.066.
  52. Yuan, D., Lin, W., Guo, R., Wong, C.P. and Das, S. (2012), "The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition", Nanotechnology, 23(21), 215303. https://doi.org/10.1088/0957-4484/23/21/215303.
  53. Zhang, R. and Wei, F. (2019), "High-efficiency particulate air filters based on carbon nanotubes", Nanotube Superfiber Mater., 2019, 643-666. https://doi.org/10.1016/B978-0-12-812667-7.00026-4.
  54. Zhou, X., Wang, C., Wu, F., Feng, M., Li, J., Lu, H. and Zhou, R. (2013), "The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube", J. Chem. Phys., 138(20), https://doi.org/10.1063/1.4807383.
  55. Zhou, X., Wu, F., Kou, J., Nie, X., Liu, Y. and Lu, H. (2013), "Vibrating-charge-driven water pump controlled by the deformation of the carbon nanotube", J. Phys. Chem. B, 117(39), 11681-11686. https://doi.org/10.1021/jp405036c.