DOI QR코드

DOI QR Code

Molecular characteristics of Escherichia coli from bulk tank milk in Korea

  • Yoon, Sunghyun (College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University) ;
  • Lee, Young Ju (College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University)
  • Received : 2021.04.08
  • Accepted : 2021.09.15
  • Published : 2022.01.31

Abstract

Background: Escherichia coli, which causes subclinical or clinical mastitis in cattle, is responsible for transmitting antimicrobial resistance via human consumption of raw milk or raw milk products. Objectives: The objective of this study was to investigate the molecular characteristics of 183 E. coli from bulk tank milk of five different dairy factories in Korea. Methods: The molecular characteristics of E. coli such as serogroup, virulence, antimicrobial resistance, and integron genes were detected using polymerase chain reaction and antimicrobial susceptibility were tested using the disk diffusion test. Results: In the distribution of phylogenetic groups, group D was the most prevalent (59.6%) and followed by group B1 (25.1%). The most predominant serogroup was O173 (15.3%), and a total of 46 different serotypes were detected. The virulence gene found most often was fimH (73.2%), and stx1, fimH, incC, fyuA, and iutA genes were significantly higher in isolates of phylogenetic group B1 compared to phylogenetic groups A, B2, and D (p < 0.05). Among 64 E. coli isolates that showed resistance to at least one antimicrobial, the highest resistance rate was observed for tetracyclines (37.5%). All 18 integron-positive E. coli carried the integron class I (int1) gene, and three different gene cassette arrangements, dfrA12+aadA2 (2 isolates), aac(6')-Ib3+aac(6')-Ib-cr+aadA4 (2 isolates), and dfrA17+aadA5 (1 isolate) were detected. Conclusions: These data suggest that the E. coli from bulk tank milk can be an indicator for dissemination of antimicrobial resistance and virulence factors via cross-contamination.

Keywords

References

  1. Dell'Orco F, Gusmara C, Loiacono M, Gugliotta T, Albonico F, Mortarino M, et al. Evaluation of virulence factors profiles and antimicrobials resistance of Escherichia coli isolated from bulk tank milk and raw milk filters. Res Vet Sci. 2019;123(123):77-83. https://doi.org/10.1016/j.rvsc.2018.12.011
  2. Camacho AT, Guitian FJ, Pallas E, Gestal JJ, Olmeda S, Goethert H, et al. Serum protein response and renal failure in canine Babesia annae infection. Vet Res. 2005;36(5-6):713-722. https://doi.org/10.1051/vetres:2005026
  3. Suojala L, Kaartinen L, Pyorala S. Treatment for bovine Escherichia coli mastitis - an evidence-based approach. J Vet Pharmacol Ther. 2013;36(6):521-531. https://doi.org/10.1111/jvp.12057
  4. Fazel F, Jamshidi A, Khoramian B. Phenotypic and genotypic study on antimicrobial resistance patterns of E. coli isolates from bovine mastitis. Microb Pathog. 2019;132:355-361. https://doi.org/10.1016/j.micpath.2019.05.018
  5. Tark DS, Moon DC, Kang HY, Kim SR, Nam HM, Lee HS, et al. Antimicrobial susceptibility and characterization of extended-spectrum β-lactamases in Escherichia coli isolated from bovine mastitic milk in South Korea from 2012 to 2015. J Dairy Sci. 2017;100(5):3463-3469. https://doi.org/10.3168/jds.2016-12276
  6. Seo KW, Lee YJ. Prevalence and characterization of β-lactamases genes and class 1 integrons in multidrug-resistant Escherichia coli isolates from chicken meat in Korea. Microb Drug Resist. 2018;24(10):1599-1606. https://doi.org/10.1089/mdr.2018.0019
  7. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555-4558. https://doi.org/10.1128/AEM.66.10.4555-4558.2000
  8. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000;181(1):261-272. https://doi.org/10.1086/315217
  9. Won GY, Moon BM, Oh IG, Matsuda K, Chaudhari AA, Hur J, et al. Profiles of virlence-associated genes of APEC isolates from chickens with colibacillosis. J Poult Sci. 2009;46:260-266. https://doi.org/10.2141/jpsa.46.260
  10. Nam HM, Lim SK, Kang HM, Kim JM, Moon JS, Jang KC, et al. Prevalence and antimicrobial susceptibility of gram-negative bacteria isolated from bovine mastitis between 2003 and 2008 in Korea. J Dairy Sci. 2009;92(5):2020-2026. https://doi.org/10.3168/jds.2008-1739
  11. Ministry of Food and Drug Safety. Processing Standards and Ingredient Specifications for Livestock Products [Internet]. Cheongju: Ministry of Food and Drug Safety; http://www.foodsafetykorea.go.kr/foodcode/01_02.jsp?idx=263. Updated 2018. Accessed January 1, 2018.
  12. Sobur MA, Sabuj AA, Sarker R, Rahman AM, Kabir SM, Rahman MT. Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. Vet World. 2019;12(7):984-993. https://doi.org/10.14202/vetworld.2019.984-993
  13. Iguchi A, Iyoda S, Seto K, Morita-Ishihara T, Scheutz F, Ohnishi M, et al. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J Clin Microbiol. 2015;53(8):2427-2432. https://doi.org/10.1128/JCM.00321-15
  14. Clinical and Laboratory Standards Institute. M100 Performance Standards for Antimicrobial Susceptibility Testing. Annapolis Junction: Clinical and Laboratory Standards Institute; 2019.
  15. Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restor Dent Endod. 2017;42(2):152-155. https://doi.org/10.5395/rde.2017.42.2.152
  16. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010;8(3):207-217. https://doi.org/10.1038/nrmicro2298
  17. Ombarak RA, Hinenoya A, Awasthi SP, Iguchi A, Shima A, Elbagory AM, et al. Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. Int J Food Microbiol. 2016;221:69-76. https://doi.org/10.1016/j.ijfoodmicro.2016.01.009
  18. Ribeiro Junior JC, Silva FF, Lima JB, Ossugui EH, Teider Junior PI, Campos AC, et al. Short communication: molecular characterization and antimicrobial resistance of pathogenic Escherichia coli isolated from raw milk and Minas Frescal cheeses in Brazil. J Dairy Sci. 2019;102(12):10850-10854. https://doi.org/10.3168/jds.2019-16732
  19. Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, et al. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun. 1999;67(2):546-553. https://doi.org/10.1128/iai.67.2.546-553.1999
  20. Ali T, Ur Rahman S, Zhang L, Shahid M, Zhang S, Liu G, et al. ESBL-producing Escherichia coli from cows suffering mastitis in China contain clinical class 1 integrons with CTX-M linked to ISCR1. Front Microbiol. 2016;7:1931.
  21. Jamali H, Krylova K, Aider M. Identification and frequency of the associated genes with virulence and antibiotic resistance of Escherichia coli isolated from cow's milk presenting mastitis pathology. Anim Sci J. 2018;89(12):1701-1706. https://doi.org/10.1111/asj.13093
  22. Liu Y, Liu G, Liu W, Liu Y, Ali T, Chen W, et al. Phylogenetic group, virulence factors and antimicrobial resistance of Escherichia coli associated with bovine mastitis. Res Microbiol. 2014;165(4):273-277. https://doi.org/10.1016/j.resmic.2014.03.007
  23. Son I, Van Kessel JA, Karns JS. Genotypic diversity of Escherichia coli in a dairy farm. Foodborne Pathog Dis. 2009;6(7):837-847. https://doi.org/10.1089/fpd.2008.0201
  24. Ombarak RA, Zayda MG, Awasthi SP, Hinenoya A, Yamasaki S. Serotypes, pathogenic potential, and antimicrobial resistance of Escherichia coli isolated from subclinical bovine mastitis milk samples in Egypt. Jpn J Infect Dis. 2019;72(5):337-339. https://doi.org/10.7883/yoken.JJID.2018.538
  25. Su Y, Yu CY, Tsai Y, Wang SH, Lee C, Chu C. Fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli from the milk of cows with clinical mastitis in Southern Taiwan. J Microbiol Immunol Infect. 2016;49(6):892-901. https://doi.org/10.1016/j.jmii.2014.10.003
  26. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol. 1998;30(5):911-921. https://doi.org/10.1046/j.1365-2958.1998.01144.x
  27. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123-140. https://doi.org/10.1038/nrmicro818
  28. Ling J, Pan H, Gao Q, Xiong L, Zhou Y, Zhang D, et al. Aerobactin synthesis genes iucA and iucC contribute to the pathogenicity of avian pathogenic Escherichia coli O2 strain E058. PLoS One. 2013;8(2):e57794. https://doi.org/10.1371/journal.pone.0057794
  29. Spurbeck RR, Dinh PC Jr, Walk ST, Stapleton AE, Hooton TM, Nolan LK, et al. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect Immun. 2012;80(12):4115-4122. https://doi.org/10.1128/IAI.00752-12
  30. Wenz JR, Barrington GM, Garry FB, Ellis RP, Magnuson RJ. Escherichia coli isolates' serotypes, genotypes, and virulence genes and clinical coliform mastitis severity. J Dairy Sci. 2006;89(9):3408-3412. https://doi.org/10.3168/jds.S0022-0302(06)72377-3
  31. Leimbach A, Poehlein A, Vollmers J, Gorlich D, Daniel R, Dobrindt U. No evidence for a bovine mastitis Escherichia coli pathotype. BMC Genomics. 2017;18(1):359. https://doi.org/10.1186/s12864-017-3739-x
  32. Batabyal K, Banerjee A, Pal S, Dey S, Joardar SN, Samanta I, et al. Detection, characterization, and antibiogram of extended-spectrum beta-lactamase Escherichia coli isolated from bovine milk samples in West Bengal, India. Vet World. 2018;11(10):1423-1427. https://doi.org/10.14202/vetworld.2018.1423-1427
  33. Linnerborg M, Weintraub A, Widmalm G. Structural studies of the O-antigen polysaccharide from the enteroinvasive Escherichia coli O173. Carbohydr Res. 1999;320(3-4):200-208. https://doi.org/10.1016/S0008-6215(99)00142-1
  34. National Institute of Food and Drug Safety Evaluation. National Antimicrobial Resistance Surveillance on the Domestic and Imported Meat and Fishery Products. Cheongju: National Institute of Food and Drug Safety Evaluation; 2019.
  35. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol. 2005;57(4):1064-1073. https://doi.org/10.1111/j.1365-2958.2005.04754.x
  36. Brinas L, Zarazaga M, Saenz Y, Ruiz-Larrea F, Torres C. β-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother. 2002;46(10):3156-3163. https://doi.org/10.1128/AAC.46.10.3156-3163.2002
  37. Khan FZ, Nawaz T, Mirani ZA, Khan S, Raza Y, Kazmi SU. Study of class 1 integrons in multidrugresistant uropathogenic Escherichia coli isolated from different hospitals in Karachi. Iran J Basic Med Sci. 2018;21(10):1079-1082.
  38. Tamang MD, Nam HM, Gurung M, Jang GC, Kim SR, Jung SC, et al. Molecular characterization of CTX-M β-lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl Environ Microbiol. 2013;79(13):3898-3905. https://doi.org/10.1128/AEM.00522-13
  39. Seo KW, Shim JB, Kim YB, Son SH, Bi Noh E, Yoon S, et al. Impacts and characteristics of antimicrobial resistance of Escherichia coli isolates by administration of third-generation cephalosporins in layer hatcheries. Vet Microbiol. 2020;243:108643. https://doi.org/10.1016/j.vetmic.2020.108643
  40. Pormohammad A, Pouriran R, Azimi H, Goudarzi M. Prevalence of integron classes in Gram-negative clinical isolated bacteria in Iran: a systematic review and meta-analysis. Iran J Basic Med Sci. 2019;22(2):118-127.