DOI QR코드

DOI QR Code

In vitro maturation using αMEM with reduced NaCl enhances maturation and developmental competence of pig oocytes after somatic cell nuclear transfer

  • Lee, Yongjin (College of Veterinary Medicine, Kangwon National University) ;
  • Lee, Joohyeong (Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University and Institute of Stem Cell & Regenerative Medicine, Chungbuk National University) ;
  • Hyun, Sang-Hwan (Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University and Institute of Stem Cell & Regenerative Medicine, Chungbuk National University) ;
  • Lee, Geun-Shik (College of Veterinary Medicine, Kangwon National University) ;
  • Lee, Eunsong (College of Veterinary Medicine, Kangwon National University)
  • 투고 : 2021.10.28
  • 심사 : 2022.01.03
  • 발행 : 2022.03.31

초록

Background: Compared to medium containing 108 mM sodium chloride (NaCl), in vitro maturation (IVM) using a simple medium with reduced (61.6 mM) NaCl increases the cytoplasmic maturation and embryonic development of pig oocytes. Objectives: This study determines the effect of a complex medium containing reduced NaCl on the IVM and embryonic development of pig oocytes. Methods: Pig oocytes were matured in Minimum Essential Medium Eagle-alpha modification (αMEM) supplemented with 61.6 (61αMEM) or 108 (108αMEM) mM NaCl, and containing polyvinyl alcohol (PVA) (αMEMP) or pig follicular fluid (PFF) (αMEMF). Medium-199 (M199) served as the control for conventional IVM. Cumulus cell expansion, nuclear maturation, intra-oocyte glutathione (GSH) contents, size of perivitelline space (PVS), and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) were evaluated after IVM. Results: Regardless of PVA or PFF supplementation, oocytes matured in 61αMEM showed increased intra-oocyte GSH contents and width of PVS (p < 0.05), as well as increased blastocyst formation (p < 0.05) after PA and SCNT, as compared to oocytes matured in 108αMEMP and M199. Under conditions of PFF-enriched αMEM, SCNT oocytes matured in 61αMEMF showed higher blastocyst formation (p < 0.05), compared to maturation in 108αMEMF and M199, whereas PA cultured oocytes showed no significant difference. Conclusions: IVM in αMEM supplemented with reduced NaCl (61.6 mM) enhances the embryonic developmental competence subsequent to PA and SCNT, which attributes toward improved oocyte maturation.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT: NRF-2021R1C1C2013954 and 2019R1F1A2019R1F1A1053796).

참고문헌

  1. Lee SE, Hyun H, Park MR, Choi Y, Son YJ, Park YG, et al. Production of transgenic pig as an Alzheimer's disease model using a multi-cistronic vector system. PLoS One. 2017;12(6):e0177933. https://doi.org/10.1371/journal.pone.0177933
  2. Shim J, Ko N, Kim HJ, Lee Y, Lee JW, Jin DI, et al. Human immune reactivity of GGTA1/CMAH/A3GALT2 triple knockout Yucatan miniature pigs. Transgenic Res. 2021;30(5):619-634. https://doi.org/10.1007/s11248-021-00271-w
  3. Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, et al. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev. 2021;168:229-245. https://doi.org/10.1016/j.addr.2020.04.001
  4. Wang K, Tang X, Xie Z, Zou X, Li M, Yuan H, et al. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res. 2017;26(6):799-805. https://doi.org/10.1007/s11248-017-0044-z
  5. Polge C, Rowson LE, Chang MC. The effect of reducing the number of embryos during early stages of gestation on the maintenance of pregnancy in the pig. J Reprod Fertil. 1966;12(2):395-397. https://doi.org/10.1530/jrf.0.0120395
  6. Schmidt M, Winther KD, Secher JO, Callesen H. Postmortem findings in cloned and transgenic piglets dead before weaning. Theriogenology. 2015;84(6):1014-1023. https://doi.org/10.1016/j.theriogenology.2015.05.037
  7. Lee J, Lee H, Lee Y, Park B, Elahi F, Lee ST, et al. In vitro oocyte maturation in a medium containing reduced sodium chloride improves the developmental competence of pig oocytes after parthenogenesis and somatic cell nuclear transfer. Reprod Fertil Dev. 2017;29(8):1625-1634. https://doi.org/10.1071/rd15488
  8. Funahashi H, Cantley TC, Stumpf TT, Terlouw SL, Day BN. Use of low-salt culture medium for in vitro maturation of porcine oocytes is associated with elevated oocyte glutathione levels and enhanced male pronuclear formation after in vitro fertilization. Biol Reprod. 1994;51(4):633-639. https://doi.org/10.1095/biolreprod51.4.633
  9. Kitagawa T, Niimura S. Relationship between the size of perivitelline space and the incidence of polyspermy in porcine oocytes. Bull Facul Agric Niigata Univ. 2006;59(1):21-26.
  10. Hyun SH, Lee GS, Kim DY, Kim HS, Lee SH, Kim S, et al. Effect of maturation media and oocytes derived from sows or gilts on the development of cloned pig embryos. Theriogenology. 2003;59(7):1641-1649. https://doi.org/10.1016/S0093-691X(02)01211-6
  11. Abeydeera LR, Wang WH, Prather RS, Day BN. Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol Reprod. 1998;58(5):1316-1320. https://doi.org/10.1095/biolreprod58.5.1316
  12. Wright CS, Hovatta O, Margara R, Trew G, Winston RM, Franks S, et al. Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod. 1999;14(6):1555-1562. https://doi.org/10.1093/humrep/14.6.1555
  13. Carney EW, Tobback C, Foote RH. Co-culture of rabbit one-cell embryos with rabbit oviduct epithelial cells. In Vitro Cell Dev Biol. 1990;26(6):629-635. https://doi.org/10.1007/BF02624213
  14. Yoshioka K. Development and application of a chemically defined medium for the in vitro production of porcine embryos. J Reprod Dev. 2011;57(1):9-16. https://doi.org/10.1262/jrd.10-196E
  15. Byri P, Gangineni A, Reddy KR, Raghavender KB. Effect of kisspeptin on in vitro maturation of sheep oocytes. Vet World. 2017;10(3):276-280. https://doi.org/10.14202/vetworld.2017.276-280
  16. Marei WF, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PE, Leroy JL. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod. 2017;96(6):1181-1196. https://doi.org/10.1093/biolre/iox046
  17. Lee Y, Lee H, Park B, Elahi F, Lee J, Lee ST, et al. Alpha-linolenic acid treatment during oocyte maturation enhances embryonic development by influencing mitogen-activated protein kinase activity and intraoocyte glutathione content in pigs. J Anim Sci. 2016;94(8):3255-3263. https://doi.org/10.2527/jas.2016-0384
  18. Du C, Davis JS, Chen C, Li Z, Cao Y, Sun H, et al. FGF2/FGFR signaling promotes cumulus-oocyte complex maturation in vitro. Reproduction. 2021;161(2):205-214. https://doi.org/10.1530/REP-20-0264
  19. Shibahara H, Munakata Y, Ishiguro A, Shirasuna K, Kuwayama T, Iwata H. Modification of the medium volume and gel substrate under in vitro culture conditions improves growth of porcine oocytes derived from early antral follicles. J Reprod Dev. 2019;65(4):375-379. https://doi.org/10.1262/jrd.2019-012
  20. Lee Y, Lee H, Lee J, Lee ST, Lee GS, Lee E. Glucose in a maturation medium with reduced NaCl improves oocyte maturation and embryonic development after somatic cell nuclear transfer and in vitro fertilization in pigs. Zygote. 2021;29(4):293-300. https://doi.org/10.1017/S0967199420000891
  21. Jin JX, Lee S, Khoirinaya C, Oh A, Kim GA, Lee BC. Supplementation with spermine during in vitro maturation of porcine oocytes improves early embryonic development after parthenogenetic activation and somatic cell nuclear transfer. J Anim Sci. 2016;94(3):963-970. https://doi.org/10.2527/jas.2015-9761
  22. Lee J, You J, Lee GS, Hyun SH, Lee E. Pig oocytes with a large perivitelline space matured in vitro show greater developmental competence after parthenogenesis and somatic cell nuclear transfer. Mol Reprod Dev. 2013;80(9):753-762. https://doi.org/10.1002/mrd.22205
  23. King N, Korolchuk S, McGivan JD, Suleiman MS. A new method of quantifying glutathione levels in freshly isolated single superfused rat cardiomyocytes. J Pharmacol Toxicol Methods. 2004;50(3):215-222. https://doi.org/10.1016/j.vascn.2004.05.003
  24. Zhang DX, Park WJ, Sun SC, Xu YN, Li YH, Cui XS, et al. Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation. J Reprod Dev. 2011;57(1):49-56. https://doi.org/10.1262/jrd.10-087H
  25. Agarwal A, Majzoub A. Role of antioxidants in assisted reproductive techniques. World J Mens Health. 2017;35(2):77-93. https://doi.org/10.5534/wjmh.2017.35.2.77
  26. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027-36031. https://doi.org/10.1074/jbc.M304854200
  27. Khazaei M, Aghaz F. Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes. Int J Fertil Steril. 2017;11(2):63-70.
  28. Baltz JM, Tartia AP. Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update. 2010;16(2):166-176. https://doi.org/10.1093/humupd/dmp045
  29. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489-492. https://doi.org/10.1093/jn/134.3.489
  30. Yuan Y, Spate LD, Redel BK, Tian Y, Zhou J, Prather RS, et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc Natl Acad Sci U S A. 2017;114(29):E5796-E5804.
  31. Foxcroft GR, Hunter MG. Basic physiology of follicular maturation in the pig. J Reprod Fertil Suppl. 1985;33:1-19.
  32. Yoshida M, Ishizaki Y, Kawagishi H, Bamba K, Kojima Y. Effects of pig follicular fluid on maturation of pig oocytes in vitro and on their subsequent fertilizing and developmental capacity in vitro. J Reprod Fertil. 1992;95(2):481-488. https://doi.org/10.1530/jrf.0.0950481
  33. Funahashi H, Day BN. Effects of follicular fluid at fertilization in vitro on sperm penetration in pig oocytes. J Reprod Fertil. 1993;99(1):97-103. https://doi.org/10.1530/jrf.0.0990097
  34. Park JE, Lee SH, Hwangbo Y, Park CK. Porcine follicular fluid derived from > 8 mm sized follicles improves oocyte maturation and embryo development during in vitro maturation of pigs. Zygote. 2021;29(1):27-32. https://doi.org/10.1017/S0967199420000398
  35. Paes VM, de Figueiredo JR, Ryan PL, Willard ST, Feugang JM. Comparative analysis of porcine follicular fluid proteomes of small and large ovarian follicles. Biology (Basel). 2020;9(5):101. https://doi.org/10.3390/biology9050101
  36. Ito M, Iwata H, Kitagawa M, Kon Y, Kuwayama T, Monji Y. Effect of follicular fluid collected from various diameter follicles on the progression of nuclear maturation and developmental competence of pig oocytes. Anim Reprod Sci. 2008;106(3-4):421-430. https://doi.org/10.1016/j.anireprosci.2007.06.003
  37. Deshmukh RS, Ostrup O, Strejcek F, Vejlsted M, Lucas-Hahn A, Petersen B, et al. Early aberrations in chromatin dynamics in embryos produced under in vitro conditions. Cell Reprogram. 2012;14(3):225-234. https://doi.org/10.1089/cell.2011.0069
  38. Diao YF, Oqani RK, Li XX, Lin T, Kang JW, Jin DI. Changes in histone H3 lysine 36 methylation in porcine oocytes and preimplantation embryos. PLoS One. 2014;9(6):e100205. https://doi.org/10.1371/journal.pone.0100205
  39. Kwak SS, Cheong SA, Yoon JD, Jeon Y, Hyun SH. Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology. 2012;78(7):1597-1610. https://doi.org/10.1016/j.theriogenology.2012.07.006
  40. Zhang M, Zhang CX, Pan LZ, Gong S, Cui W, Yuan HJ, et al. Meiotic arrest with roscovitine and follicular fluid improves cytoplasmic maturation of porcine oocytes by promoting chromatin de-condensation and gene transcription. Sci Rep. 2017;7(1):11574. https://doi.org/10.1038/s41598-017-11970-y