DOI QR코드

DOI QR Code

Reduced use of nitrogen fertilizer through retarded hydrolysis of urea by pyroligneous acid for Chinese cabbage cultivation

배추 재배 시 목초액에 의한 요소 가수분해 지연을 통한 질소비료 절감 효과

  • Lee, Joo-Kyung (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Park, Hyun Jun (Soil Research Institute, Prumbio Co. Ltd) ;
  • Park, Jin Hee (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2021.11.17
  • Accepted : 2021.12.14
  • Published : 2022.03.31

Abstract

Urea is one of the most common nitrogen fertilizer, but nitrogen use efficiency by crop is low because of rapid hydrolysis of urea and loss of nitrogen in environments. Therefore, it is important to control the nitrogen release from nitrogen fertilizers. In this study, pyroligneous acid (PA) was used as a mean to inhibit urease in soil and prevent excessive nitrogen release from urea. Active ingredient in PA (AI) inhibited ammonification of urea in soil by reducing extracted ammonium nitrogen at 79.7% compared to the soil without PA. In order to evaluate the effect of PA on fertilization efficiency of urea, Chinese cabbage (Brassica campestris var. Pekinensis) was cultivated in soil treated with urea and PA both in pot and field. For PA treatment, half amount of urea was used compared to the amount of urea conventionally applied to Chinese cabbage. The PA treatment with half amount of urea resulted in similar Chinese cabbage biomass to the conventional urea application. Nitrogen concentration in Chinese cabbage was less in PA treatment indicating that Chinse cabbage effectively used nitrogen. Consequently, fertilization of urea with PA will reduce amount of fertilizer and frequency of application.

요소는 가장 보편적인 질소비료 중 하나인데 빠른 가수분해와 환경으로의 질소 손실로 인해 작물에 질소 이용효율이 낮다. 따라서 요소 비료에서 질소 방출을 제어하는 것이 중요하다. 본 연구에서는 토양의 요소가수분해효소를 억제하여 요소에서 과도한 질소 용출을 방지하기 위해 목초액을 처리하였다. 목초액의 유효성분은 목초액을 처리하지 않은 토양에 비해 암모늄태 질소의 추출량을 79.7% 감소시켜 토양에서 요소의 암모니아화를 억제한 것으로 나타났다. 목초액이 요소의 시비 효율에 미치는 영향을 평가하기 위해 요소와 목초액을 처리한 토양에서 배추(Brassica campestris var. Pekinensis)를 각각 포트와 포장에서 재배하였다. 목초액을 요소와 같이 처리했을 때 관행적으로 사용하는 요소량의 반을 사용하였으며 관행과 비교하여 유사한 배추 생체중을 보였다. 배추의 질소 함량은 목초액 처리구에서 낮아 배추가 질소를 효율적으로 사용한 것으로 판단된다. 따라서 요소를 목초액의 유효성분과 같이 처리하면 시비량과 시비 횟수를 감소시킬 수 있다.

Keywords

Acknowledgement

이 논문은 충북대학교 국립대학육성사업(2020) 지원을 받아 작성되었음.

References

  1. Yosef Tabar S (2012) Effect of nitrogen and phosphorus fertilizer on growth and yield rice (Oryza sativa L). Int J Agron Plant Prod 3(12): 579-584
  2. Rawluk CDL, Grant CA, Racz GJ (2001) Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT. Can J Soil Sci 81(2): 239-246. doi: 10.4141/S00-052
  3. Ni B, Liu M, Lu S, Xie L, Wang Y (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59(18): 10169-10175. doi: 10.1021/jf202131z
  4. Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH (2014) Review on materials & methods to produce controlled release coated urea fertilizer. J Control Release 181: 11-21. doi: 10.1016/j.jconrel.2014.02.020
  5. Farmaha BS, Sims AL (2013) The influence of polymer-coated urea and urea fertilizer mixtures on spring wheat protein concentrations and economic returns. Agronomy J 105(5): 1328-1334. doi: 10.2134/agronj2012.0454
  6. Zhang S, Yang Y, Gao B, Wan Y, Li YC, Zhao C (2016) Bio-based interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. J Agric Food Chem 64(28): 5692-5700. doi: 10.1021/acs.jafc.6b01688
  7. Krogmeier MJ, McCarty GW, Bremner JM (1989) Potential phytotoxicity associated with the use of soil urease inhibitors. Proc Natl Acad Sci 86(4): 1110-1112. doi: 10.1073/pnas.86.4.1110
  8. Cardelli R, Becagli M, Marchini F, Saviozzi A (2020) Soil biochemical activities after the application of pyroligneous acid to soil. Soil Res 58(5): 461-467 https://doi.org/10.1071/SR19373
  9. Mathew S, Zakaria ZA (2015) Pyroligneous acid-the smoky acidic liquid from plant biomass. App Microbio Biotechnology 99(2): 611-622. doi: 10.1007/s00253-014-6242-1
  10. Grewal A, Abbey L, Gunupuru LR (2018) Production, prospects and potential application of pyroligneous acid in agriculture. J Anal Appl Pyrolysis 135: 152-159. doi: 10.1016/j.jaap.2018.09.008
  11. Park HJ, Park JH (2017) Effect of pyroligneous acids on urease inhibition. J Appl Biol Chem 60(2): 173-178. doi: 10.3839/jabc.2017.028
  12. Lee J, Park HJ, Cha SJ, Kwon SJ, Park JH (2021) Effect of pyroligneous acid on soil urease, amidase, and nitrogen use efficiency by Chinese cabbage (Brassica campestris var. Pekinensis). Environ Pollut 118132. doi: 10.1016/j.envpol.2021.118132
  13. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37: 29-38 https://doi.org/10.1097/00010694-193401000-00003
  14. Bremner JM, Keeney DR (1965) Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal Chim Acta 32: 485-495. doi: 10.1016/S0003-2670(00)88973-4
  15. Mahmud KN, Hashim NM, Ani FN, Zakaria ZA (2020) Antioxidants, Toxicity, and Nitric Oxide Inhibition Properties of Pyroligneous Acid from Palm Kernel Shell Biomass. Waste Biomass Valorization 11(11): 6307-6319. doi: 10.1007/s12649-019-00857-w
  16. Park HJ (2000) Characterization of the natural chemicals from pyroligneous acids inhibiting urea hydrolysis and nitrification. Dissertation, Seoul National University
  17. Watson CJ, Miller H (1996) Short-term effects of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide on perennial ryegrass. Plant Soil 184(1): 33-45. doi: 10.1007/BF00029272
  18. Schroder JL, Zhang H, Girma K, Raun WR, Penn CJ, Payton ME (2011) Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci Soc Am J 75(3): 957-964. doi: 10.2136/sssaj2010.0187|