DOI QR코드

DOI QR Code

Characterization of Weizmannia ginsengihumi LGHNH from Wild-Ginseng and Anti-Aging Effects of Its Cultured Product

산삼 공생 미생물 Weizmannia ginsengihumi LGHNH의 특징 및 배양물의 항노화 효능

  • 권민정 (LG 생활건강 기술연구원) ;
  • 이혜진 (LG 생활건강 기술연구원) ;
  • 이소영 (LG 생활건강 기술연구원) ;
  • 진무현 (LG 생활건강 기술연구원)
  • Received : 2022.04.13
  • Accepted : 2022.07.21
  • Published : 2022.09.28

Abstract

In this study, we isolated Weizmannia ginsengihumi LGHNH (KCTC 14462BP) from 30-year-old wild Panax ginseng C.A. Meyer and elucidated the characteristics of the isolated bacterium and its industrial potential as an anti-aging material. W. ginsengihumi LGHNH was investigated to produce indole-3-acetic acid (IAA), a plant growth-promoting hormone (1.38 ㎍/ml to 2.22 ㎍/ml). We also confirmed the existence of bioconversion activity via the comparison of the ginsenoside content before and after fermentation. As for the converted minor ginsenoside, Rg2(R), Rg4, Rg6, Rg3(S), Rg3(R), Rk1, Rg5, Rh1(R), Rk3 and Rh4 are known to have high bioavailability and various skin effects. We measured mitochondrial membrane potential and ATP biosynthesis to elucidate W. ginsengihumi LGHNH cultured product (WCP) as an anti-aging material. As a result, the mitochondrial membrane potential in HaCaT cells with UVB decreased to 39.3% compared to the unirradiated group, but was recovered to 57.3% and 58.1% by 0.001% (v/v) and 0.01% (v/v) WCP, respectively. In addition, we measured mitochondrial ATP biosynthesis. It decreased to 94.3% compared to the unirradiated group with UVB, but was recovered to 105.3% and 105.7% by 0.001% (v/v) and 0.01% (v/v) WCP.

식물 공생 미생물은 기주 식물과 함께 공생하는 미생물로 생장 촉진, 면역력 증진, 대사체 생성 등의 역할을 수행하며 식물 발달에 영향을 준다. 본 연구를 통해 30년근 산삼에서 분리 동정한 미생물인 W. ginsengihumi LGHNH (KCTC 14462BP)은 식물 생장 촉진 호르몬인 indole-3-acetic acid (IAA)을 1.38 ㎍/ml에서 2.22 ㎍/ml 수준으로 분비함을 확인하였다. 또한 발효 전, 후의 진세노사이드 함량 비교를 통해 진세노사이드 전환능이 있음을 확인하였다. 전환된 저분자 진세노사이드인 Rg2(R), Rg4, Rg6, Rg3(S), Rg3(R), Rk1, Rg5, Rh1(R), Rk3, Rh4 등은 생체 이용률이 높고 다양한 피부 효능을 갖는다고 알려져 있다. 배양물로 제조한 W. ginsengihumi LGHNH (W. ginsengihumi LGHNH Cultured product, WCP)의 항노화 소재로서 가능성을 탐색하기 위해 미토콘드리아의 막전위와 ATP 생합성량을 측정하여 기능 저하 억제 여부를 확인하였다. 노화를 발생시키는 인자인 UVB를 조사한 HaCaT 세포 내 미토콘드리아 막전위 값을 측정한 결과, 미조사군 대비 39.3%로 감소하나 WCP 0.001% (v/v), 0.01% (v/v)에 의해 각각 57.3%, 58.1% 수준까지 회복함을 확인하였다. 또한 미토콘드리아의 ATP 생합성량 측정 결과, UVB 조사에 의해 미조사군 대비 94.3% 수준으로 감소하나 WCP를 0.001% (v/v), 0.01% (v/v) 처리한 군에서 각 각 105.3%, 105.7%로 증가하여 미토콘드리아 기능을 정상으로 회복하는데 도움을 줄 수 있다고 판단된다. 따라서, 본 연구를 통해 확보한 30년근 산삼의 공생 미생물은 항노화 관련 생물 자원으로서 산업적 활용 가능성이 높다.

Keywords

References

  1. Wilson D. 1998. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73: 274-276. https://doi.org/10.2307/3545919
  2. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, et al. 2005. Burkholderia phytofirmans sp. nov., a novel plantassociated bacterium with plant-beneficial properties. Int. J. Syst. Evol. Microbiol. 55: 1187-1192. https://doi.org/10.1099/ijs.0.63149-0
  3. Bokhari A, Essack M, Lafi FF, Andres-Barrao C, Jalal R, Alamoudi S, et al. 2019. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci. Rep. 9: 18154.
  4. Calvo-Garrido C, Roudet J, Aveline N, Davidou L, Dupin S, Fermaud M. 2019. Microbial antagonism toward Botrytis bunch rot of grapes in multiple field tests using one Bacillus ginsengihumi strain and formulated biological control products. Front. Plant Sci. 11: 105.
  5. Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, et al. 2020. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol. 20: 175.
  6. Song X, Wu H, Yin Z, Lian M, Yin C. 2017. Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 22: 837.
  7. Gao Y, Liu Q, Zang P, Li X, Ji Q, He Z, et al. 2015. An endophytic bacterium isolated from Panax ginseng C. A. Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem. Lett. 11: 132-138. https://doi.org/10.1016/j.phytol.2014.12.007
  8. Subramanian M, Marudhamuthu M. 2020. Hitherto unknown terpene synthase organization in Taxol-producing endophytic bacteria isolated from marine macroalgae. Curr. Microbiol. 77: 918-923. https://doi.org/10.1007/s00284-020-01878-8
  9. Kim H, Myoung K, Lee HG, Choi E-J, Park T, An S. 2020. Lactoabacillus plantarum APsulloc 331261 fermented products as potential skin microbial modulation cosmetic ingredients. J. Soc. Cosmet. Sci. Korea 46: 23-29.
  10. Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ. 2001. The evolution of Araliaceae: A phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst. Bot. 26: 144-167.
  11. Kang S, Min H. 2012. Ginseng, the "immunity boost": The effects of Panax ginseng on immune system. J. Ginseng Res. 36: 354-368. https://doi.org/10.5142/jgr.2012.36.4.354
  12. Lee CH, Kim JH. 2014. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J. Ginseng Res. 38: 161-166. https://doi.org/10.1016/j.jgr.2014.03.001
  13. Kim YG, Sumiyoshi M, Sakanaka M, Kimura Y. 2009. Effects of ginseng saponins isolated from red ginseng on ultraviolet Binduced skin aging in hairless mice. Eur. J. Pharmacol. 602: 148-156. https://doi.org/10.1016/j.ejphar.2008.11.021
  14. Lee J, Jung E, Lee J, Huh S, Kim J, Park M, et al. 2007. Panax ginseng induces human Type I collagen synthesis through activation of Smad signaling. J. Ethnopharmacol. 109: 29-34. https://doi.org/10.1016/j.jep.2006.06.008
  15. Park S, Na C, Yoo S, Seo S, Son H. 2017. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J. Ginseng Res. 41: 36-42. https://doi.org/10.1016/j.jgr.2015.12.008
  16. Yi EJ, Lee JM, Yi TH, Cho SC, Park YJ, Kook MC. 2012. Biotransformation of ginsenoside by Lactobacillus brevis THK-D57 isolated from kimchi. Korean J. Food Nutr. 25 : 629-636. https://doi.org/10.9799/KSFAN.2012.25.3.629
  17. Yan H, Jin H, Fu Y, Yin Z, Yin C. 2019. Production of rare ginsenosides Rg3 and Rh2 by endophytic bacteria from Panax ginseng. J. Agric. Food Chem. 67: 8493-8499. https://doi.org/10.1021/acs.jafc.9b03159
  18. Wu H, Yang H, You X, Li Y. 2012. Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China. Int. J. Mol. Sci. 13: 16255-16266. https://doi.org/10.3390/ijms131216255
  19. Kim WJ, Song HG. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Korean J. Microbiol. 48: 1-7. https://doi.org/10.7845/kjm.2012.48.1.001
  20. Fu Y, Yin ZH, Yin CY. 2017. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng. J. Appl. Microbiol. 122: 1579-1585. https://doi.org/10.1111/jam.13435
  21. Huang Q, Gao S, Zhao D, Li X. 2021. Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives. J. Ginseng Res. 45: 371-379. https://doi.org/10.1016/j.jgr.2020.12.004
  22. Shin EJ, Jo S, Choi S, Cho CW, Lim WC, Hong HD, et al. 2020. Red ginseng improves exercise endurance by promoting mitochondrial biogenesis and myoblast differentiation. Molecules 25: 865.
  23. Kong D, Tian X, Li Y, Zhang S, Cheng Y, Huo L, et al. 2018. Revealing the inhibitory effect of ginseng on mitochondrial respiration through synaptosomal proteomics. Proteomics 11: e1700354.
  24. Huang Y. 2019. Illumina-based analysis of endophytic bacterial diversity of four Allium species. Sci. Rep. 9: 15271.
  25. Lee SA, Kim Y, Kim JM, Chu B, Joa J-H, Sang MK, et al. 2019. A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci. Rep. 9: 9300.
  26. Gupta RS, Patel S, Saini N, Chen S. 2020. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 70: 5753-5798. https://doi.org/10.1099/ijsem.0.004475
  27. Ambrosini A, Passaglia LM. 2017. Plant growth-promoting bacteria (PGPB): isolation and screening of PGP activities. Curr. Protoc. Plant. Biol. 2: 190-209. https://doi.org/10.1002/pb.20054
  28. Kim WJ, Song HG. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Korean J. Microbiol. 48: 1-7. https://doi.org/10.7845/kjm.2012.48.1.001
  29. Vendan RT, Yu YJ, Lee SH, Rhee YH. 2010. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 48: 559-565. https://doi.org/10.1007/s12275-010-0082-1
  30. Um Y, Kim BR, Jeong JJ, Chung CM, Lee Y. 2014. Identification of endophytic bacteria in Panax ginseng seeds and their potential for plant growth promotion. Korean J. Crop Sci. 22: 306-312. https://doi.org/10.7783/KJMCS.2014.22.4.306
  31. Wang L, Lu AP, Yu RN, Wong RN, Bian ZX, Kwok HH, et al. 2014. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1. AAPS PharmSciTech. 15: 1252-1262. https://doi.org/10.1208/s12249-014-0138-3
  32. Choi S. 2002. Epidermis proliferative effect of the Panax ginseng ginsenoside Rb 2. Arch. Pharm. Res. 25: 71-76. https://doi.org/10.1007/BF02975265
  33. Kang HJ, Oh Y, Lee S, Ryu IW, Kim K, Lim CJ. 2015. Antioxidative properties of ginsenoside Ro against UV-B-induced oxidative stress in human dermal fibroblasts. Biosci. Biotech. Biochem. 79: 2018-2021. https://doi.org/10.1080/09168451.2015.1065170
  34. Jin Y, Baek N, Back S, Myung C-S, Heo K-S. 2018. Inhibitory effect of ginsenosides Rh1 and Rg2 on oxidative stress in LPS-stimulated RAW 264.7 cells. J. Bacteriol. Virol. 48: 156-165. https://doi.org/10.4167/jbv.2018.48.4.156
  35. Wan S, Liu Y, Shi J, Fan D, Li B. 2021. Anti-photoaging and antiinflammatory effects of ginsenoside Rk3 during exposure to UV Irradiation. Front. Pharmacol. 12: 716248.
  36. Kim S-W, Jeong J-H, Jo B-K. 2004. Anti-wrinkle effect by Ginsenoside Rg3 derived from ginseng. J. Soc. Cosmet. Sci. Korea 30: 221-225.
  37. Jin Y, Kim JH, Hong HD, Kwon J, Lee EJ, Jang M, et al. 2018. Ginsenosides Rg5 and Rk1, the skin-whitening agents in black ginseng. J. Funct. Foods 45: 67-74. https://doi.org/10.1016/j.jff.2018.03.036
  38. Ku S, You HJ, Park MS, Ji GE. 2016. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechnol. 26: 1206-1215. https://doi.org/10.4014/jmb.1601.01002
  39. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, et al. 2017. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14: 89-96. https://doi.org/10.1111/iwj.12557
  40. Abdul-Muneer PM, Chandra N, Haorah J. 2015. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol. Neurobiol. 51: 966-979. https://doi.org/10.1007/s12035-014-8752-3