References
- Wilson D. 1998. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73: 274-276. https://doi.org/10.2307/3545919
- Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, et al. 2005. Burkholderia phytofirmans sp. nov., a novel plantassociated bacterium with plant-beneficial properties. Int. J. Syst. Evol. Microbiol. 55: 1187-1192. https://doi.org/10.1099/ijs.0.63149-0
- Bokhari A, Essack M, Lafi FF, Andres-Barrao C, Jalal R, Alamoudi S, et al. 2019. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci. Rep. 9: 18154.
- Calvo-Garrido C, Roudet J, Aveline N, Davidou L, Dupin S, Fermaud M. 2019. Microbial antagonism toward Botrytis bunch rot of grapes in multiple field tests using one Bacillus ginsengihumi strain and formulated biological control products. Front. Plant Sci. 11: 105.
- Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, et al. 2020. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol. 20: 175.
- Song X, Wu H, Yin Z, Lian M, Yin C. 2017. Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 22: 837.
- Gao Y, Liu Q, Zang P, Li X, Ji Q, He Z, et al. 2015. An endophytic bacterium isolated from Panax ginseng C. A. Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem. Lett. 11: 132-138. https://doi.org/10.1016/j.phytol.2014.12.007
- Subramanian M, Marudhamuthu M. 2020. Hitherto unknown terpene synthase organization in Taxol-producing endophytic bacteria isolated from marine macroalgae. Curr. Microbiol. 77: 918-923. https://doi.org/10.1007/s00284-020-01878-8
- Kim H, Myoung K, Lee HG, Choi E-J, Park T, An S. 2020. Lactoabacillus plantarum APsulloc 331261 fermented products as potential skin microbial modulation cosmetic ingredients. J. Soc. Cosmet. Sci. Korea 46: 23-29.
- Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ. 2001. The evolution of Araliaceae: A phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst. Bot. 26: 144-167.
- Kang S, Min H. 2012. Ginseng, the "immunity boost": The effects of Panax ginseng on immune system. J. Ginseng Res. 36: 354-368. https://doi.org/10.5142/jgr.2012.36.4.354
- Lee CH, Kim JH. 2014. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J. Ginseng Res. 38: 161-166. https://doi.org/10.1016/j.jgr.2014.03.001
- Kim YG, Sumiyoshi M, Sakanaka M, Kimura Y. 2009. Effects of ginseng saponins isolated from red ginseng on ultraviolet Binduced skin aging in hairless mice. Eur. J. Pharmacol. 602: 148-156. https://doi.org/10.1016/j.ejphar.2008.11.021
- Lee J, Jung E, Lee J, Huh S, Kim J, Park M, et al. 2007. Panax ginseng induces human Type I collagen synthesis through activation of Smad signaling. J. Ethnopharmacol. 109: 29-34. https://doi.org/10.1016/j.jep.2006.06.008
- Park S, Na C, Yoo S, Seo S, Son H. 2017. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J. Ginseng Res. 41: 36-42. https://doi.org/10.1016/j.jgr.2015.12.008
- Yi EJ, Lee JM, Yi TH, Cho SC, Park YJ, Kook MC. 2012. Biotransformation of ginsenoside by Lactobacillus brevis THK-D57 isolated from kimchi. Korean J. Food Nutr. 25 : 629-636. https://doi.org/10.9799/KSFAN.2012.25.3.629
- Yan H, Jin H, Fu Y, Yin Z, Yin C. 2019. Production of rare ginsenosides Rg3 and Rh2 by endophytic bacteria from Panax ginseng. J. Agric. Food Chem. 67: 8493-8499. https://doi.org/10.1021/acs.jafc.9b03159
- Wu H, Yang H, You X, Li Y. 2012. Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China. Int. J. Mol. Sci. 13: 16255-16266. https://doi.org/10.3390/ijms131216255
- Kim WJ, Song HG. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Korean J. Microbiol. 48: 1-7. https://doi.org/10.7845/kjm.2012.48.1.001
- Fu Y, Yin ZH, Yin CY. 2017. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng. J. Appl. Microbiol. 122: 1579-1585. https://doi.org/10.1111/jam.13435
- Huang Q, Gao S, Zhao D, Li X. 2021. Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives. J. Ginseng Res. 45: 371-379. https://doi.org/10.1016/j.jgr.2020.12.004
- Shin EJ, Jo S, Choi S, Cho CW, Lim WC, Hong HD, et al. 2020. Red ginseng improves exercise endurance by promoting mitochondrial biogenesis and myoblast differentiation. Molecules 25: 865.
- Kong D, Tian X, Li Y, Zhang S, Cheng Y, Huo L, et al. 2018. Revealing the inhibitory effect of ginseng on mitochondrial respiration through synaptosomal proteomics. Proteomics 11: e1700354.
- Huang Y. 2019. Illumina-based analysis of endophytic bacterial diversity of four Allium species. Sci. Rep. 9: 15271.
- Lee SA, Kim Y, Kim JM, Chu B, Joa J-H, Sang MK, et al. 2019. A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci. Rep. 9: 9300.
- Gupta RS, Patel S, Saini N, Chen S. 2020. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 70: 5753-5798. https://doi.org/10.1099/ijsem.0.004475
- Ambrosini A, Passaglia LM. 2017. Plant growth-promoting bacteria (PGPB): isolation and screening of PGP activities. Curr. Protoc. Plant. Biol. 2: 190-209. https://doi.org/10.1002/pb.20054
- Kim WJ, Song HG. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Korean J. Microbiol. 48: 1-7. https://doi.org/10.7845/kjm.2012.48.1.001
- Vendan RT, Yu YJ, Lee SH, Rhee YH. 2010. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 48: 559-565. https://doi.org/10.1007/s12275-010-0082-1
- Um Y, Kim BR, Jeong JJ, Chung CM, Lee Y. 2014. Identification of endophytic bacteria in Panax ginseng seeds and their potential for plant growth promotion. Korean J. Crop Sci. 22: 306-312. https://doi.org/10.7783/KJMCS.2014.22.4.306
- Wang L, Lu AP, Yu RN, Wong RN, Bian ZX, Kwok HH, et al. 2014. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1. AAPS PharmSciTech. 15: 1252-1262. https://doi.org/10.1208/s12249-014-0138-3
- Choi S. 2002. Epidermis proliferative effect of the Panax ginseng ginsenoside Rb 2. Arch. Pharm. Res. 25: 71-76. https://doi.org/10.1007/BF02975265
- Kang HJ, Oh Y, Lee S, Ryu IW, Kim K, Lim CJ. 2015. Antioxidative properties of ginsenoside Ro against UV-B-induced oxidative stress in human dermal fibroblasts. Biosci. Biotech. Biochem. 79: 2018-2021. https://doi.org/10.1080/09168451.2015.1065170
- Jin Y, Baek N, Back S, Myung C-S, Heo K-S. 2018. Inhibitory effect of ginsenosides Rh1 and Rg2 on oxidative stress in LPS-stimulated RAW 264.7 cells. J. Bacteriol. Virol. 48: 156-165. https://doi.org/10.4167/jbv.2018.48.4.156
- Wan S, Liu Y, Shi J, Fan D, Li B. 2021. Anti-photoaging and antiinflammatory effects of ginsenoside Rk3 during exposure to UV Irradiation. Front. Pharmacol. 12: 716248.
- Kim S-W, Jeong J-H, Jo B-K. 2004. Anti-wrinkle effect by Ginsenoside Rg3 derived from ginseng. J. Soc. Cosmet. Sci. Korea 30: 221-225.
- Jin Y, Kim JH, Hong HD, Kwon J, Lee EJ, Jang M, et al. 2018. Ginsenosides Rg5 and Rk1, the skin-whitening agents in black ginseng. J. Funct. Foods 45: 67-74. https://doi.org/10.1016/j.jff.2018.03.036
- Ku S, You HJ, Park MS, Ji GE. 2016. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechnol. 26: 1206-1215. https://doi.org/10.4014/jmb.1601.01002
- Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, et al. 2017. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14: 89-96. https://doi.org/10.1111/iwj.12557
- Abdul-Muneer PM, Chandra N, Haorah J. 2015. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol. Neurobiol. 51: 966-979. https://doi.org/10.1007/s12035-014-8752-3