DOI QR코드

DOI QR Code

비피도박테리움 CBT BG7, BR3, BL3의 진세노사이드 전환능

Bioconversion of Ginsenosides by Bifidobacterium CBT BG7, BR3 and BL3

  • 최지원 ((주)쎌바이오텍 세포공학연구소) ;
  • 권창 ((주)쎌바이오텍 세포공학연구소) ;
  • 김종원 ((주)쎌바이오텍 세포공학연구소) ;
  • 정명준 ((주)쎌바이오텍 세포공학연구소) ;
  • 윤종현 ((주)쎌바이오텍 세포공학연구소) ;
  • 임상현 ((주)쎌바이오텍 세포공학연구소)
  • 투고 : 2022.08.07
  • 심사 : 2022.09.07
  • 발행 : 2022.09.28

초록

본 연구에서는 한국형 프로바이오틱스와 홍삼을 발효하여 저분자 진세노사이드인 compound K (CK)로 생물전환되는지를 확인하였다. 프로바이오틱스 19종의 유전체 분석결과, 진세노사이드 Rb1에서 CK로 전환에 관련된 β-glucosidase는 19종 모든 균주에서 확인되었고, α-arabinofuranosidase 유전자는 3종의 균주, β-xylosidase는 6종 균주, α-rhamnosidase는 8종의 균주에서 확인되었다. 이 중 B. longum CBT BG7는 Rb1으로부터 CK까지 전환시켜, CK 함량을 증가시켰다. 또한, B. breve CBT BR3와 B. lactis CBT BL3은 Rb1을 Rd로 전환시켰다. 균체를 파쇄 또는 미파쇄하여 진세노사이드 전환 반응을 비교했을 때 미파쇄물이 F2와 CK로의 높은 전환량과 수율을 보였다. CBT BG7 + BL3와 BG7 + BR3 혼합균주는 CBT BG7 단독보다 진세노사이드 F2의 함량을 증가시켰다. CBT BG7과 α-amylase 효소를 함께 반응하였을 때에 F2 함량이 증가되었다. 본 연구는 한국형 프로바이오틱스인 CBT BG7, BR3, BL3와 홍삼을 함께 섭취할 경우, 건강에 도움을 주는 생리활성물질인 CK의 생산을 확인하였다. 추후 부탄올 등 다양한 추출용매를 활용하여 생물전환 효율 및 CK로의 전환율에 대한 추가 연구가 필요해 보인다.

In this study, we identified that the fermentation of Korean indigenous probiotics and red ginseng produced ginsenoside compound K (CK) from major ginsenosides. Based on whole genome sequencing of 19 probiotics species, β-glucosidase, α-arabinofuranosidase, β-xylosidase, and α-rhamnosidase related to bioconversion of ginsenosides are identified in the genome of 19 species, 3 species, 6 species, and 8 species, respectively. Among the 19 probiotics species, Bifidobacterium longum CBT BG7 converted from ginsenoside Rb1 to CK, and both B. breve CBT BR3 and B. lactis CBT BL3 converted ginsenoside Rb1 to Rd. The final concentration and yield of ginsenoside F2 and CK were higher in the fermentation with the nondisrupted cells than with disrupted cells. The combination of both CBT BG7 and BL3, and CBT BG7 and BR3 showed higher amounts of F2 than CBT BG7 only. CBT BG7 with adding α-amylase increased the amounts of F2. In this study, we identified that the fermentation of both Korean indigenous probiotic bacteria CBT BG7, BR3 and BL3, and red gingseng is able to produce CK, a bioactive compound that promotes health benefits.

키워드

과제정보

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (iPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food AND Rural Affairs (321036051HD040).

참고문헌

  1. Park SY, Park JH, Kim HS, Lee CY, Lee HJ, Kang KS, et al. 2018. Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach. J. Ginseng Res. 42: 98-106. https://doi.org/10.1016/j.jgr.2017.09.001
  2. Park YC, Lim JD, Kim JB, Lee S. 2012. Review of red ginseng in terms of mechanisms for pharmacodynamics and toxicity. J. Korean Orient. Med. 33: 200-230. https://doi.org/10.3904/kjm.2012.82.2.200
  3. Yang XD, Yang YY, Ouyang DS, Yang GP. 2015. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100: 208-220. https://doi.org/10.1016/j.fitote.2014.11.019
  4. Ganesan P, Ko HM, Kim IS, Choi DK. 2015. Recent trends of nano bioactive compounds from ginseng for its possible preventive role in chronic disease models. RSC Adv. 5: 98634-98642. https://doi.org/10.1039/C5RA20559J
  5. Christensen LP, Jensen M. 2009. Biomass and content of ginsenosides and polyacetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds. J. Nat. Med. 63: 159-168. https://doi.org/10.1007/s11418-008-0307-3
  6. Park H. 2019. The role of gut microbiota in ginsenoside metabolism and biotransformation of ginsenoside by lactic acid bacteria. Curr. Top. Lact. Acid Bact. Probiotics 5: 1-12. https://doi.org/10.35732/ctlabp.2019.5.1.1
  7. Shibata S. 2001. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Korean Med. Sci. 16: Suppl: S28-S37. https://doi.org/10.3346/jkms.2001.16.s.s28
  8. Han MH, Moon GS. 2019. Bioconversion of ginseng using nicroorganisms. J. Biotechnol. Bioind. 7: 5-11. https://doi.org/10.37503/jbb.2019.7.5
  9. Akao T, Kanaoka M, Kobashi K. 1998. Appearance of compound a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 21: 245-249. https://doi.org/10.1248/bpb.21.245
  10. Kim DH. 2009. Metabolism of ginsenosides to bioactive compounds by intestinal microflora and its industrial application. J. Ginseng Res. 33: 165-176. https://doi.org/10.5142/JGR.2009.33.3.165
  11. Lee J, Lee E, Kim D, Yoo J, Koh B. 2009. Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J. Ethnopharmacol. 122: 143-148. https://doi.org/10.1016/j.jep.2008.12.012
  12. Santangelo R, Silvestrini A, Mancuso C. 2019. Ginsenosides, catechins, quercetin and gut microbiota: Current evidence of challenging interactions. Food Chem. Toxicol. 123: 42-49. https://doi.org/10.1016/j.fct.2018.10.042
  13. Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. 2018. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front. Pharmacol. 9: 423.
  14. Yao H, Wan JY, Zeng J, Huang WH, Sava-Segal C, Li L, et al. 2018. Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer. Oncol. Lett. 15: 8339-8348.
  15. Wang CZ, Du GJ, Zhang Z, Wen XD, Calway T, Zhen Z, et al. 2012. Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer. Int. J. Oncol. 40: 1970-1976.
  16. Chang KH, Jo MN, Kim HT, Paik HD. 2014. Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3. J. Ginseng Res. 38: 47-51. https://doi.org/10.1016/j.jgr.2013.11.008
  17. Quan K, Liu Q, Wan J, Zhao Y, Guo RZ, Alolga RN, et al. 2015. Rapid preparation of rare ginsenosides by acid transformation and their structure activity relationships against cancer cells. Sci. Rep. 5: 8598.
  18. Kim MY, Lee JW, Lee KY, Yang DC. 2005. Microbial conversion of major ginsenoside Rb(1) to pharmaceutically active minor ginsenoside Rd. J. Microbiol. 43: 456-462.
  19. Kim CK. 2012. Ginseng sponins processing by using bio-conversion technology. J. Ginseng Res. 6: 3-13.
  20. Yoo JM, Lee JY, Lee YG, Baek S, Kim MR. 2018. Enhanced production of compound K in fermented ginseng extracts by Lactobacillus brevis. Food Sci. Biotechnol. 28: 823-829. https://doi.org/10.1007/s10068-018-0504-0
  21. Park B, Hwang H, Lee J, Sohn SO, Lee SH, Jung MY, et al. 2017. Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi. J. Ginseng Res. 41: 524-530. https://doi.org/10.1016/j.jgr.2016.10.003
  22. Kim JH, Shin MJ, Chung MJ, Kim SH. 2021. Identification of spices promoting the growth of lactic acid bacteria and modulation of tight junction protein at mRNA level by the fermented product of red pepper (Capsicum annuum L.) in HT-29 cell. J. Korean Soc. Food Sci. Nutr. 50: 16-28. https://doi.org/10.3746/jkfn.2021.50.1.16
  23. Korea Health Supplements Association. 2022. Health Functional Foods Code II, pp. 351-355. KHSA, Seongnam, Gyeonggi, Republic of Korea.
  24. Ku S, You HJ, Park MS, Ji GE. 2015. Effects of ascorbic acid on α-l-arabinofuranosidase and α-l-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. J. Korean Soc. Appl. Biol. Chem. 58: 857-865. https://doi.org/10.1007/s13765-015-0113-z
  25. Bae EA, Park SY, Kim DH. 2000. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull. 23: 1481-1485. https://doi.org/10.1248/bpb.23.1481
  26. Ku S, You HJ, Park MS, Ji GE. 2016. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechnol. 26: 1206-1215. https://doi.org/10.4014/jmb.1601.01002
  27. Ku S, You HJ, Park MS, Ji GE. 2015. Effects of ascorbic acid on α-l-arabinofuranosidase and α-l-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. J. Korean Soc. Appl. Biol. Chem. 58: 857-865. https://doi.org/10.1007/s13765-015-0113-z
  28. Kim JK, Choi MS, Jeung W, Ra J, Yoo HH, Kim DH. 2020. Effects of gut microbiota on the pharmacokinetics of protopanaxadiol ginsenosides Rd, Rg3, F2, and compound K in healthy volunteers treated orally with red ginseng. J. Ginseng Res. 44: 611-618. https://doi.org/10.1016/j.jgr.2019.05.012
  29. Kim NM, Lee JS, Lee BH. 2000. Effect of α-amylase on the qualities of red ginseng extract. J. Ginseng. Res. 24: 153-156.