DOI QR코드

DOI QR Code

Anticancer and Cytotoxic Effect of Verotoxin 1 on Colon Cancer Cell Line

  • Mustafa Attiyah, Hadid (Department of Dentistry, Al-Farabi University College, and College of Biotechnology, Al-Nahrain University) ;
  • Mohammad M.F., Al-Halbosiy (Biotechnology Research Center, Al-Nahrain University) ;
  • Abdulwahid B., Al-Shaibani (Department of Biology, Al-Farabi University College, College of Biotechnology, Al-Nahrain University)
  • Received : 2022.04.13
  • Accepted : 2022.08.25
  • Published : 2022.09.28

Abstract

Verotoxin-1 (VT-1) or Shiga-like toxin 1 (Stx-1) is produced by enterohemorrhagic Escherichia coli (EHEC) and is an AB5 holotoxin with a strong inhibitor of protein synthesis. VT-1 is a type 2 ribosome-inactivating protein (RIP) that has been shown to have cytotoxic and anticancer potential by inducing necrosis, apoptosis, and cell cycle arrest, making it a promising antitumor candidate. Here, we tested the cytotoxicity of VT-1 on CaCo2 and NCM425 cell lines and the results showed that VT-1 was more potent on CaCo2. Morphological changes were also evaluated on the cellular level and the results showed that VT-1 caused a decrease in viable cell count, altered cell membrane permeability, and an increase in total nuclear intensity. On the other hand, VT-1 displayed a lesser impact on mitochondrial membrane potential (MMP) and cytochrome c release. On the expression of caspases 3 and 9, VT-1 exhibited an insignificant effect on both which alongside the mitochondrial membrane potential (MMP) and cytochrome c results, might indicate that CaCo2 suffered from the necrosis process as a mechanism of cell death after exposure to VT-1.

Keywords

References

  1. Kouzel IU, Pohlentz G, Schmitz JS, Steil D, Humpf HU, Karch H, et al. 2017. Shiga toxin glycosphingolipid receptors in human Caco2 and HCT-8 colon epithelial cell lines. Toxins 9: 338.
  2. Bergan J, Dyve Lingelem AB, Simm R, Skotland T, Sandvig K. 2012. Shiga toxins. Toxicon 60: 1085-1107. https://doi.org/10.1016/j.toxicon.2012.07.016
  3. Nakao H, Takeda T. 2000. Escherichia coli Shiga toxin. J. Nat. Toxins 9: 299-313.
  4. Karch H, Friedrich AW, Gerber A, Zimmerhackl LB, Schmidt MA, Bielaszewska M. 2006. New aspects in the pathogenesis of enteropathic hemolytic uremic syndrome. Semin. Thromb. Hemost. 32: 105-112. https://doi.org/10.1055/s-2006-939766
  5. Robert A, Wiels J. 2021. Shiga toxins as antitumor tools. Toxins 13: 690-690. https://doi.org/10.3390/toxins13100690
  6. Pellizzari A, Pang H, Lingwood CA. 2002. Binding of verocytotoxin 1 to its receptor is influenced by differences in receptor fatty acid content. Biochemistry 31: 1363-1370. https://doi.org/10.1021/bi00120a011
  7. Ling H, Boodhoo A, Hazes B, Cummings MD, Armstrong GD, Brunton JL, et al. 1998. Structure of the Shiga-like toxin I B-pen-tamer complexed with an analogue of its receptor Gb3. Biochemistry 37: 1777-1788. https://doi.org/10.1021/bi971806n
  8. Oloomi M, Imani M, Behzadi R, Asori M, Bouzari S, Mokhlesi B. 2018. Anti-tumor activity of Escherichia coli Shiga toxin A subunit delivered by SF9 insect cells. J. Pharmacol. Sci. 138: 71-75. https://doi.org/10.1016/j.jphs.2018.09.003
  9. Engedal N, Skotland T, Torgersen ML, Sandvig K. 2011. Shiga toxin and its use in targeted cancer therapy and imaging. Microb. Biotechnol. 4: 32-32. https://doi.org/10.1111/j.1751-7915.2010.00180.x
  10. Bryan A, Youngster I, McAdam AJ. 2015. Shiga toxin producing Escherichia coli. Clin. Lab. Med. 35: 247-272. https://doi.org/10.1016/j.cll.2015.02.004
  11. Bauwens A, Bielaszewska M, Kemper B, Langehanenberg P, Gert Von B, Reichelt, et al. 2011. Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells. Thromb. Haemost. 105: 515-528. https://doi.org/10.1160/TH10-02-0140
  12. Yaghoubi A, Khazaei M, Avan A, Hasanian SM, Soleimanpour S. 2020. The bacterial instrument as a promising therapy for colon cancer. Int. J. Colorectal. Dis. 35: 595-606. https://doi.org/10.1007/s00384-020-03535-9
  13. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68: 394-424. https://doi.org/10.3322/caac.21492
  14. Lea T. 2015. Caco-2 Cell Line, pp. 103-111. In Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds.), The Impact of Food Bioactives on Health: in vitro and ex vivo models. Springer International Publishing, Switzerland.
  15. Vinken M, Rogiers V. 2015. Protocols in in vitro hepatocyte research, pp. 77-93. 1st ed. Springer, New York.
  16. Kamiloglu S, Sari G, Ozdal T, Capanoglu E. 2020. Guidelines for cell viability assays. Food Front. 1: 332-349. https://doi.org/10.1002/fft2.44
  17. O'Brien PJ, Edvardsson A. 2017. Validation of a multiparametric, high-content-screening assay for predictive/investigative cytotoxicity: Evidence from technology transfer studies and literature review. Chem. Res. Toxicol. 30: 804-829. https://doi.org/10.1021/acs.chemrestox.6b00403
  18. Hassan F, Mohammed G, El-Hiti G, Alshanon A, Yousif E. 2018. Cytotoxic effects of tamoxifen in breast cancer cells. J. Unexplored Med. Data 3: 3.
  19. Shamsee Z, Al-Saffar A, Al-Shanon A, Al-Obaidi J. 2019. Cytotoxic and cell cycle arrest induction of pentacyclic triterpenoides separated from Lantana camara leaves against MCF-7 cell line in vitro. Mol. Biol. Rep. 46: 381-390. https://doi.org/10.1007/s11033-018-4482-3
  20. Yamasaki C, Natori Y, Zeng XT, Ohmura M, Yamasaki S, Takeda Y, et al. 1999. Induction of cytokines in a human colon epithelial cell line by Shiga toxin 1 (Stx1) and Stx2 but not by non-toxic mutant Stx1 which lacks N-glycosidase activity. FEBS Lett. 442: 231-234. https://doi.org/10.1016/S0014-5793(98)01667-6
  21. Talukder KA, Azmi IJ, Ahmed KA, Hossain MS, Kabir Y, Cravioto A, et al. 2012. Activation of p53/ATM-dependent DNA damage signaling pathway by shiga toxin in mammalian cells. Microb. Pathog. 52: 311-317. https://doi.org/10.1016/j.micpath.2012.02.007
  22. Kovbasnjuk O, Mourtazina R, Baibakov B, Wang T, Elowsky C, Choti MA, et al. 2005. The glycosphingolipid globotriaosylceramide in the metastatic transformation of colon cancer. Proc. Natl. Acad. Sci. USA 102: 19087-19092. https://doi.org/10.1073/pnas.0506474102
  23. Distler U, Souady J, Hulsewig M, Drmic-Hofman I, Haier J, Friedrich AW, et al. 2009. Shiga toxin receptor Gb3Cer/CD77: tumor-association and promising therapeutic target in pancreas and colon cancer. PLoS One 4: e6813.
  24. Falguieres T, Maak M, Von Weyhern C, Sarr M, Sastre X, Poupon MF, et al. 2008. Human colorectal tumors and metastases express Gb3 and can be targeted by an intestinal pathogen-based delivery tool. Mol. Cancer Ther. 7: 2498-2508. https://doi.org/10.1158/1535-7163.MCT-08-0430
  25. Schuller S, Heuschkel R, Torrente F, Kaper JB, Phillips AD. 2007. Shiga toxin binding in normal and inflamed human intestinal mucosa. Microbes Infect. 9: 35-39. https://doi.org/10.1016/j.micinf.2006.10.005
  26. Feitz WJC, van Setten PA, van der Velden TJAM, Licht C, van den Heuvel LPJW, van de Kar NCAJ. 2021. Cell biological responses after Shiga toxin-1 exposure to primary human glomerular microvascular endothelial cells from pediatric and adult origin. Int. J. Mol. Sci. 22: 5615.
  27. Abraham VC, Towne DL, Waring JF, Warrior U, Burns DJ. 2008. Application of a high-content multiparameter cytotoxicity assay to prioritize compounds based on toxicity potential in humans. J. Biomol. Screen. 13: 527-537. https://doi.org/10.1177/1087057108318428
  28. Hasan NR. 2021. Cytotoxicity potential of local isolates of Lactobacillus acidophilus extracts on colon cancer cell line. Annal. Romanian Soc. Cell Biol. 25: 6750-6765.
  29. Suardana W, Januartha K, Pinatih P, Widiasih DA. 2018. Apoptosis and necrosis on T47D cells induced by Shiga-like toxin from local isolates of Escherichia coli O157:H7. doi: 10.20944/preprints201804.0342.v1.
  30. Barnett Foster D, Abul-Milh M, Huesca M, Lingwood CA. 2000. Enterohemorrhagic Escherichia coli induces apoptosis which augments bacterial binding and phosphatidylethanolamine exposure on the plasma membrane outer leaflet. Infect. Immun. 68: 3108-3115. https://doi.org/10.1128/IAI.68.6.3108-3115.2000
  31. Fujii J, Matsui T, Heatherly DP, Schlegel KH, Lobo PI, Yutsudo T, et al. 2003. Rapid apoptosis induced by Shiga toxin in HeLa cells. Infect. Immun. 71: 2724-2724. https://doi.org/10.1128/IAI.71.5.2724-2735.2003
  32. Chiaravalli J, Glickman aJF. 2017. A high-content live-cell viability assay and its validation on a diverse 12K compound screen. SLAS Discov. 22: 1120-1130. https://doi.org/10.1177/2472555217724745
  33. Ricci JE, Gottlieb RA, Green DR. 2003. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J. Cell Biol. 160: 65-75. https://doi.org/10.1083/jcb.200208089
  34. Cummings BS, Schnellmann RG. 2004. Measurement of cell death in mammalian cells. Curr. Protoc. Pharmacol. 1: e210.
  35. Tang B, Li Q, Zhao XH, Wang HG, Li N, Fang Y, et al. 2015. Shiga toxins induce autophagic cell death in intestinal epithelial cells via the endoplasmic reticulum stress pathway. Autophagy 11: 344-354. https://doi.org/10.1080/15548627.2015.1023682
  36. Debernardi J, Pioche-Durieu C, Cam EL, Wiels J, Robert A. 2020. Verotoxin-1-induced ER stress triggers apoptotic or survival pathways in Burkitt Lymphoma cells. Toxins 12: 316.
  37. Liu Y, Tian S, Thaker H, Dong M. 2021. Shiga toxins: An update on host factors and biomedical applications. Toxins 13: 222. https://doi.org/10.3390/toxins13010011
  38. Menge C. 2020. Molecular biology of Escherichia coli Shiga toxins' effects on Mammalian cells. Toxins 12: 345.
  39. Kausche FM, Dean EA, Arp LH, Moon HW, Samuel JE. 1992. An experimental model for subclinical edema disease (Escherichia coli enterotoxemia) manifest as vascular necrosis in pigs. Am. J. Vet. Res. 3: 281-287.
  40. Wadolkowski EA, Sung LM, Burris JA, Samuel JE, O'Brien AD. 1990. Acute renal tubular necrosis and death of mice orally infected with Escherichia coli strains that produce Shiga-like toxin type II. Infect. Immun. 58: 3959-3965. https://doi.org/10.1128/iai.58.12.3959-3965.1990
  41. Methiyapun S, Pohlenz JFL, Bertschinger HU. 1984. Ultrastructure of the intestinal mucosa in pigs experimentally inoculated with an edema disease-producing strain of Escherichia coli (0139:K12:H1). Vet. Pathol. 21: 516-520. https://doi.org/10.1177/030098588402100511
  42. Matise I, Sirinarumitr T, Bosworth BT, Moon HW. 2000. Vascular ultrastructure and DNA fragmentation in swine infected with Shiga toxin-producing Escherichia coli. Vet. Pathol. 37: 318-327. https://doi.org/10.1354/vp.37-4-318