DOI QR코드

DOI QR Code

Mulberry Low-Fat Ice Cream Supplemented with Synbiotic: Formulation, Phytochemical Composition, Nutritional Characteristics, and Sensory Properties

  • Kittisak, Thampitak (Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University) ;
  • Rattanaporn, Pimisa (Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University) ;
  • Pongsanat, Pongcharoen (Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University) ;
  • Suppasil, Maneerat (Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University) ;
  • Noraphat, Hwanhlem (Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University)
  • Received : 2022.06.06
  • Accepted : 2022.08.25
  • Published : 2022.09.28

Abstract

For this study, we designed and produced mulberry low-fat ice cream supplemented with synbiotics (MLF-ISS). The sensory characteristics and physical, chemical, and microbiological qualities of MLF-ISS were then determined. Mulberry juice inoculated with or without probiotic (Lactobacillus plantarum TISTR 926 and Saccharomyces boulardii CNCM I-745) was also tested at 37℃ for 24 h to determine probiotic growth rate, pH, total anthocyanin content (TAC), total phenolic content (TPC), and antioxidant activity (AA). Only the TAC of mulberry juice inoculated with S. boulardii CNCM I-745 increased considerably (p < 0.05) among these parameters. MLF-ISS was produced with varied mulberry fruit concentrations (0, 10, 20, 30, or 40%) (w/w). The MLF-ISS prepared with 30% mulberry fruit (w/w) (30-MLF-ISS) had a higher score in appearance, color, and sweetness (p < 0.05) when sensory qualities were measured using the 9-point hedonic scale method. In the CIE lab system (L*, a*, b*), the color values of 30-MLF-ISS were 27.80 ± 0.26, 12.99 ± 0.59, and 1.43 ± 0.05, respectively. The 30-MLF-ISS was also subjected to a proximate analysis. The melting rate of 30-MLF-ISS was 0.29 ± 0.03 g/min and the time it took for the first drop to fall was 37.00 ± 7.00 min. TAC, TPC, and AA of 30-MLF-ISS were observed to alter significantly (p < 0.05) during varied intervals of storage at - 18℃ (0, 30, and 60 days). The viability of probiotics in 30-MLF-ISS slightly decreased after storage at -18℃ for 8 weeks, but remained about 6 log CFU/g. During storage at -18℃ for 0 and 120 days, no pathogenic bacteria were detected in 30-MLF-ISS. These findings show that 30-MLF-ISS has nutritional and functional value, is free of foodborne pathogenic bacteria, is safe for consumers' health, and is suitable for application in the ice cream and related food industries.

Keywords

Acknowledgement

This work was financially supported by the Thailand Science Research and Innovation (TSRI) and the National Science and Technology Development Agency (NSTDA) (RUG6150017). It was also financially supported by the Agricultural Research Development Agency (ARDA, Public Organization) to Mr. Kittisak Thampitak under the Research Fellowship Program for a graduate student in Agriculture and Agro-Industry (2563/1).

References

  1. Nguyen CL, Nguyen HVH. 2018. Ultrasonic effects on the quality of mulberry juice. Beverages 4: 56.
  2. Khalifa I, Zhu W, Li K, Li C. 2018. Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability - A structural review. J. Funct. Foods 40: 28-43. https://doi.org/10.1016/j.jff.2017.10.041
  3. Andallu B, Varadacharyulu NC. 2003. Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin. Chim. Acta Int. J. Clin. Chem. 338: 3-10. https://doi.org/10.1016/S0009-8981(03)00322-X
  4. Huang J, Wang Y, Ying C, Liu L, Lou Z. 2018. Effects of mulberry leaf on experimental hyperlipidemia rats induced by high-fat diet. Exp. Ther. Med. 16: 547-556.
  5. Eo HJ, Park JH, Park GH, Lee MH, Lee JR, Koo JS, et al. 2014. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark. BMC Complement. Altern. Med. 14: 200.
  6. Bao T, Xu Y, Gowd V, Zhao J, Xie J, Liang W, et al. 2016. Systematic study on phytochemicals and antioxidant activity of some new and common mulberry cultivars in China. J. Funct. Foods 25: 537-547. https://doi.org/10.1016/j.jff.2016.07.001
  7. Kang TH, Hur JY, Kim HB, Ryu JH, Kim SY. 2006. Neuroprotective effects of the cyanidin-3-O-beta-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci. Lett. 391: 122-126. https://doi.org/10.1016/j.neulet.2005.08.053
  8. Ajay Krishna PG, Sivakumar TR, Jin C, Li S-H, Weng Y-J, Yin J, et al. 2018. Antioxidant and hemolysis protective effects of polyphenolrich extract from mulberry fruits. Pharmacogn. Mag. 14: 103-109. https://doi.org/10.4103/pm.pm_491_16
  9. Chang BY, Kim SB, Lee MK, Park H, Kim SY. 2015. Improved chemotherapeutic activity by Morus alba fruits through immune response of toll-like receptor 4. Int. J. Mol. Sci. 16: 24139-24158. https://doi.org/10.3390/ijms161024139
  10. Wu C-S, Chung T-J, Lee Y-J, Hsu J-D, Lee H-J. 2020. Mulberry supplementation reduces lipid deposition and protects hamster retina from oxLDL damage. J. Funct. Foods 71: 104007.
  11. Liu H, Yang J, Huang S, Liu R, He Y, Zheng D, et al. 2017. Mulberry crude extracts induce Nrf2 activation and expression of detoxifying enzymes in rat liver: Implication for its protection against NP-induced toxic effects. J. Funct. Foods 32: 367-374. https://doi.org/10.1016/j.jff.2017.03.024
  12. Zhang L, Su S, Zhu Y, Guo J, Guo S, Qian D, et al. 2019. Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and TGF-β/Smads signaling pathway. Biomed. Pharmacother. 112: 108675.
  13. Jan B, Parveen R, Zahiruddin S, Khan MU, Mohapatra S, Ahmad S. 2021. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J. Biol. Sci. 28: 3909-3921. https://doi.org/10.1016/j.sjbs.2021.03.056
  14. Rohela GK, Shukla P, Muttanna, Kumar R, Chowdhury SR. 2020. Mulberry (Morus spp.): An ideal plant for sustainable development. Trees For. People 2: 100011.
  15. Marshall RT, Goff HD, Hartel RW. 2003. The Ice Cream Industry, pp. 1-9. In Marshall RT, Goff HD, Hartel RW (eds.), Ice Cream. Springer US, Boston, MA.
  16. Akbari M, Eskandari MH, Davoudi Z. 2019. Application and functions of fat replacers in low-fat ice cream: A review. Trends Food Sci. Technol. 86: 34-40. https://doi.org/10.1016/j.tifs.2019.02.036
  17. Erkaya T, Dagdemir E, Sengul M. 2012. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Res. Int. 45: 331-335.
  18. Cruz AG, Antunes AEC, Sousa ALOP, Faria JAF, Saad SMI. 2009. Icecream as a probiotic food carrier. Food Res. Int. 42: 1233-1239. https://doi.org/10.1016/j.foodres.2009.03.020
  19. Athiyyah AF, Widjaja NA, Fitri P, Setiowati A, Darma A, Ranuh R, et al. 2019. Effects of a multispecies synbiotic on intestinal mucosa immune responses. Iran J. Microbiol. 11: 300-304.
  20. Plaza-Diaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM, Gil A. 2017. Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients 9: 555.
  21. Olas B. 2020. Probiotics, prebiotics and synbiotics -A promising strategy in prevention and treatment of cardiovascular diseases? Int. J. Mol. Sci. 21: 9737.
  22. Mofidi F, Poustchi H, Yari Z, Nourinayyer B, Merat S, Sharafkhah M, et al. 2017. Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: a pilot, randomised, doubleblind, placebo-controlled, clinical trial. Br. J. Nutr. 117: 662-668. https://doi.org/10.1017/S0007114517000204
  23. Scott AJ, Merrifield CA, Younes JA, Pekelharing EP. 2018. Pre-, pro- and synbiotics in cancer prevention and treatment-a review of basic and clinical research. Ecancermedicalscience 12: 869.
  24. Lou H, Hu Y, Zhang L, Sun P, Lu H. 2012. Nondestructive evaluation of the changes of total flavonoid, total phenols, ABTS and DPPH radical scavenging activities, and sugars during mulberry (Morus alba L.) fruits development by chlorophyll fluorescence and RGB intensity values. LWT Food Sci. Technol. 47: 19-24. https://doi.org/10.1016/j.lwt.2012.01.008
  25. Lee J, Durst RW, Wrolstad RE. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int. 88: 1269-1278. https://doi.org/10.1093/jaoac/88.5.1269
  26. Kwaw E, Ma Y, Tchabo W, Apaliya MT, Wu M, Sackey AS, et al. 2018. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 250: 148-154. https://doi.org/10.1016/j.foodchem.2018.01.009
  27. Jiang D-Q, Guo Y, Xu D-H, Huang Y-S, Yuan K, Lv Z-Q. 2013. Antioxidant and anti-fatigue effects of anthocyanins of mulberry juice purification (MJP) and mulberry marc purification (MMP) from different varieties mulberry fruit in China. Food Chem. Toxicol. 59: 1-7. https://doi.org/10.1016/j.fct.2013.05.023
  28. Mohammadi R, Mortazavian AM, Khosrokhavar R, Cruz AG da. 2011. Probiotic ice cream: viability of probiotic bacteria and sensory properties. Ann. Microbiol. 61: 411-424. https://doi.org/10.1007/s13213-010-0188-z
  29. Cardello AV. 2017. Hedonic scaling: assumptions, contexts and frames of reference. Curr. Opin. Food Sci. 15: 14-21. https://doi.org/10.1016/j.cofs.2017.05.002
  30. Akbari M, Eskandari MH, Niakosari M, Bedeltavana A. 2016. The effect of inulin on the physicochemical properties and sensory attributes of low-fat ice cream. Int. Dairy J. 57: 52-55. https://doi.org/10.1016/j.idairyj.2016.02.040
  31. Goff HD, Hartel RW. 2013. Ice Cream Structure, pp. 313-352., In Goff HD, Hartel RW (eds.), Ice Cream. Springer US, Boston, MA.
  32. Alamprese C, Foschino R, Rossi M, Pompei C, Savani L. 2002. Survival of Lactobacillus johnsonii La1 and influence of its addition in retail-manufactured ice cream produced with different sugar and fat concentrations. Int. Dairy J. 12: 201-208. https://doi.org/10.1016/S0958-6946(01)00159-5
  33. Natic MM, Dabic DC, Papetti A, Fotiric Aksic MM, Ognjanov V, Ljubojevic M, et al. 2015. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem. 171: 128-136. https://doi.org/10.1016/j.foodchem.2014.08.101
  34. Hosseini A-S, Akramian M, Khadivi A, Salehi-Arjmand H. 2018. Phenotypic and chemical variation of black mulberry (Morus nigra) genotypes. Ind. Crops Prod. 117: 260-271. https://doi.org/10.1016/j.indcrop.2018.03.007
  35. Song W, Wang H-J, Bucheli P, Zhang P-F, Wei D-Z, Lu Y-H. 2009. Phytochemical profiles of different mulberry (Morus sp.) species from China. J. Agric. Food Chem. 57: 9133-9140. https://doi.org/10.1021/jf9022228
  36. Li H, Tsao R, Deng Z. 2012. Factors affecting the antioxidant potential and health benefits of plant foods. Can. J. Plant Sci. 92: 1101-1111. https://doi.org/10.4141/cjps2011-239
  37. Kitagaki H, Araki Y, Funato K, Shimoi H. 2007. Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett. 581: 2935-2942. https://doi.org/10.1016/j.febslet.2007.05.048
  38. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Frohlich K-U. 2004. Apoptosis in yeast. Curr. Opin. Microbiol. 7: 655-660. https://doi.org/10.1016/j.mib.2004.10.012
  39. Buttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kroemer G, Madeo F. 2006. Why yeast cells can undergo apoptosis: Death in times of peace, love, and war. J. Cell Biol. 175: 521-525. https://doi.org/10.1083/jcb.200608098
  40. Alighourchi H, Barzegar M. 2009. Some physicochemical characteristics and degradation kinetic of anthocyanin of reconstituted pomegranate juice during storage. J. Food Eng. 90: 179-185. https://doi.org/10.1016/j.jfoodeng.2008.06.019
  41. Kwaw E, Tchabo W, Ma Y, Apaliya MT, Sackey AS, Mintah BK, et al. 2018. Effect of storage on quality attributes of lactic-acid-fermented mulberry juice subjected to combined pulsed light and ultrasonic pasteurization treatment. J. Food Meas. Charact. 12: 1763-1771. https://doi.org/10.1007/s11694-018-9791-7
  42. Chaiyasut C, Pengkumsri N, Sirilun S, Peerajan S, Khongtan S, Sivamaruthi BS. 2017. Assessment of changes in the content of anthocyanins, phenolic acids, and antioxidant property of Saccharomyces cerevisiae mediated fermented black rice bran. AMB Express 7: 114.
  43. Tao Y, Wang Y, Yang J, Wang Q, Jiang N, Chu D-T, et al. 2017. Chemical composition and sensory profiles of mulberry wines as fermented with different Saccharomyces cerevisiae strains. Int. J. Food Prop. 20: 2006-2021.
  44. Wang L, Sun X, Li F, Yu D, Liu X, Huang W, et al. 2015. Dynamic changes in phenolic compounds, colour and antioxidant activity of mulberry wine during alcoholic fermentation. J. Funct. Foods 18: 254-265. https://doi.org/10.1016/j.jff.2015.07.013
  45. Can A, Kazankaya A, Orman E, Gundogdu M, Ercisli S, Choudhary R, et al. 2021. Sustainable mulberry (Morus nigra L., Morus alba L. and Morus rubra L.) production in Eastern Turkey. Sustainability 13: 13507.
  46. Gecer MK, Akin M, Gundogdu M, Eyduran SP, Ercisli S, Eyduran E. 2016. Organic acids, sugars, phenolic compounds, and some horticultural characteristics of black and white mulberry accessions from Eastern Anatolia. Can. J. Plant Sci. 96: 27-33. https://doi.org/10.1139/cjps-2015-0070
  47. Balthazar CF, Silva HLA, Vieira AH, Neto RPC, Cappato LP, Coimbra PT, et al. 2017. Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream. Food Res. Int. 91: 38-46. https://doi.org/10.1016/j.foodres.2016.11.008
  48. Muse MR, Hartel RW. 2004. Ice cream structural elements that affect melting rate and hardness. J. Dairy Sci. 87: 1-10. https://doi.org/10.3168/jds.S0022-0302(04)73135-5
  49. Fuangpaiboon N, Kijroongrojana K. 2017. Sensorial and physical properties of coconut-milk ice cream modified with fat replacers. Maejo Int. J. Sci. Technol. 11: 133-147.
  50. Ij P, Cn D, Sv P. 2014. Development of technology for manufacture of ragi ice cream. J. Food Sci. Technol. 52: 4015-4028. https://doi.org/10.1007/s13197-014-1518-0
  51. Gilmara Barboza Januario J, Oliveira AS, Dias SS, Klososki S, Pimentel T. 2018. Kefir ice cream flavored with fruits and sweetened with honey: Physical and chemical characteristics and acceptance. Int. Food Res. J. 25: 179-187.
  52. Ozturk HI, Demirci T, Akin N. 2018. Production of functional probiotic ice creams with white and dark blue fruits of Myrtus communis: The comparison of the prebiotic potentials on Lactobacillus casei 431 and functional characteristics. LWT 90: 339-345. https://doi.org/10.1016/j.lwt.2017.12.049
  53. Chua IYP, King PJH, Ong KH, Sarbini SR, Yiu PH. 2015. Influence of light intensity and temperature on antioxidant activity in Premna serratifolia L. J. Soil Sci. Plant Nutr. 15: 605-614.
  54. Fracassetti D, Del Bo' C, Simonetti P, Gardana C, Klimis-Zacas D, Ciappellano S. 2013. Effect of time and storage temperature on anthocyanin decay and antioxidant activity in wild blueberry (Vaccinium angustifolium) powder. J. Agric. Food Chem. 61: 2999-3005. https://doi.org/10.1021/jf3048884
  55. Marquez A, Perez-Serratosa M, Varo MA, Merida J. 2014. Effect of temperature on the anthocyanin extraction and color evolution during controlled dehydration of Tempranillo grapes. J. Agric. Food Chem. 62: 7897-7902. https://doi.org/10.1021/jf502235b
  56. Lee J-H, Oh M-M. 2015. Short-term low temperature increases phenolic antioxidant levels in kale. Hortic. Environ. Biotechnol. 56: 588-596. https://doi.org/10.1007/s13580-015-0056-7
  57. Lo Piero AR, Puglisi I, Rapisarda P, Petrone G. 2005. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J. Agric. Food Chem. 53: 9083-9088. https://doi.org/10.1021/jf051609s
  58. Zhang Q, Zhai J, Shao L, Lin W, Peng C. 2019. Accumulation of anthocyanins: An adaptation strategy of mikania micrantha to low temperature in winter. Front. Plant Sci. 10: 1049.
  59. Lopez-Vidana EC, Figueroa IP, Cortes FB, Rojano BA, Ocana AN. 2017. Effect of temperature on antioxidant capacity during drying process of mortino (Vaccinium meridionale Swartz). Int. J. Food Prop. 20: 294-305. https://doi.org/10.1080/10942912.2016.1155601
  60. Matsushita K, Sakayori A, Ikeda T. 2016. The effect of high air temperature on anthocyanin concentration and the expressions of its biosynthetic genes in strawberry 'Sachinoka'. Environ. Control Biol. 54: 101-107. https://doi.org/10.2525/ecb.54.101
  61. Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. 2007. Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 58: 1935-1945. https://doi.org/10.1093/jxb/erm055
  62. Zlotek U, Gawlik-Dziki U, Dziki D, Swieca M, Nowak R, Martinez E. 2019. Influence of drying temperature on phenolic acids composition and antioxidant activity of sprouts and leaves of white and red quinoa. Available from https://www.hindawi.com/journals/ jchem/2019/7125169/. Accessed Feb. 23, 2020.
  63. Salem MME, Fathi FA, Awad RA. 2005. Production of probiotic ice cream. Pol. J. Food Nutr. Sci. 55: 267-271.
  64. Chaikham P, Rattanasena P. 2017. Combined effects of low-fat ice cream supplemented with probiotics on colon microfloral communities and their metabolites during fermentation in a human gut reactor. Food Biosci. 17: 35-41. https://doi.org/10.1016/j.fbio.2016.12.005
  65. Di Criscio T, Fratianni A, Mignogna R, Cinquanta L, Coppola R, Sorrentino E, et al. 2010. Production of functional probiotic, prebiotic, and synbiotic ice creams. J. Dairy Sci. 93: 4555-4564. https://doi.org/10.3168/jds.2010-3355
  66. El-Sayed HS, Salama HH, El-Sayed SM. 2015. Production of synbiotic ice cream. Int. J. Chemtech Res. 7: 138-147.
  67. Mathews S, Ngoma L, Gashe B, Mpuchane S. 2013. Assessment of pathogenic bacteria from ice cream and ice pop sold in Gaborone, Botswana. Stud. Ethno-Med. 7: 195-203. https://doi.org/10.1080/09735070.2013.11886461
  68. Jawdat Fadihl S, Qassim Mohammad S, Muafaq Al-qrtani Y. 2019. Microbiological evaluation of locally produced ice cream in Baquba city. Iraq. J. Phys. Conf. Ser. 1294: 062057.
  69. Nalbone L, Vallone L, Giarratana F, Virgone G, Lamberta F, Marotta SM, et al. 2022. Microbial risk assessment of industrial ice cream marketed in Italy. Appl. Sci. 12: 1988.