DOI QR코드

DOI QR Code

Heterologous Expression of Streptomyces PETase Gene Involved in PET Biodegradation

PET 생분해에 관여하는 방선균 유래 PETase 유전자의 이종숙주 발현

  • Soo-been, Yang (Department of Biological Sciences and Bioengineering, Inha University) ;
  • Yeon-jin, Yoo (Department of Biological Sciences and Bioengineering, Inha University) ;
  • Eung-Soo, Kim (Department of Biological Sciences and Bioengineering, Inha University) ;
  • Sisun, Choi (Department of Biological Sciences and Bioengineering, Inha University)
  • 양수빈 (인하대학교 생물공학과) ;
  • 유연진 (인하대학교 생물공학과) ;
  • 김응수 (인하대학교 생물공학과) ;
  • 최시선 (인하대학교 생물공학과)
  • Received : 2022.11.07
  • Accepted : 2022.12.13
  • Published : 2022.12.28

Abstract

PET (Polyethylene terephthalate), a representative plastic material, has useful physicochemical properties such as high durability and economic feasibility, and is used in various industrial fields such as bottles, fibers, and containers. Due to the recent increase in plastic usage including disposable products, eco-friendly strategy using microorganisms have drawn attention differentiated from conventional landfill and incineration methods. In this study, a soil-derived Streptomyces javensis Inha503 containing a PETase gene was selected and the ability to hydrolyze PU (Polyurethane) was confirmed through agar plate diffusion assay. This strain was cultured with PET for a month, and PET decomposition ability was also confirmed through a scanning electron microscope. Moreover, cloning and heterologous expression of S. javensis Inha503 PETase gene exhibited PET activity in the PETase non-containing S. coelicolor, confirming for the first time the presence of functional PETase gene in Streptomyces species.

대표적인 플라스틱 소재인 PET (Polyethylene terephthalate)는 높은 내구성, 경제성과 같은 유용한 물리화학적 특성으로 병, 섬유, 용기 등 다양한 산업 분야에 사용되고 있다. 최근 일회용품을 비롯한 플라스틱 사용량 증가로 인해, 이를 처리하기 위한 방법이 필요한 상황이다. 기존의 매립, 소각 등과 같이 자연상태에 노출되는 방법과 달리 최근 미생물을 이용한 친환경적인 방법이 주목받고 있다. 본 연구에서는 PETase 유전자를 가지고 있는 토양 유래 방선균 Streptomyces. javensis Inha503를 선별하고, agar plate diffusion assay를 통해 PU (Polyurethane) 가수분해 능력을 확인하였다. 해당 균주를 PET과 함께 한달 간 배양하였고, 주사전자현미경을 통해 PET 분해능력을 확인하였다. 또한, S. javensis Inha503 유전체 탐색에서 선별된 PETase 유전자를 PET 분해능이 없는 이종숙주 S. lividans와 S. coelicolor 균주에 도입하여 PET 분해능을 확인함으로써, 방선균 유래 PETase 유전자의 활성을 최초로 확인하였다.

Keywords

Acknowledgement

This study was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01563901)" Rural Development Administration.

References

  1. Joo S, Cho IJ, Seo H, Son HF, Sagong HY, Shin TJ, et al. 2018. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9: 382.
  2. Plastics Europe. 2008. The compelling facts about plastics: an analysis of plastic production, demand and recovery for 2006 in Europe.
  3. Plastics Europe. 2021. Plastics - the Facts 2021.
  4. Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, et al. 2013. Classify plastic waste as hazardous. Nature 494: 169-171. https://doi.org/10.1038/494169a
  5. Patricio Silva AL, Prata JC, Walker TR, Duarte AC, Ouyang W, Barcelo D, et al. 2021. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 405: 126683.
  6. Knoblauch D, Mederake L. 2001. Government policies combatting plastic pollution. Curr. Opin. Toxicol. 28: 87-96. https://doi.org/10.1016/j.cotox.2021.10.003
  7. Chung MS, Lee WH, You YS, Kim HY, Park KM. 2003. Manufacturing multi-degradable food packaging films and their degradability. Korean J. Food. Sci. Technol. 35: 877-883.
  8. Organization for Economic Co-operation and Development. 2022. Global Plastic Outlook.
  9. Teuten EL, Saquing JM, Knappe DR, Barlaz MA, Jonsson S, Bjorn A, et al. 2009. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364: 2027-45. https://doi.org/10.1098/rstb.2008.0284
  10. Ragaert K, Delva L, Van Geem K. 2017. Mechanical and chemical recycling of solid plastic waste. Waste. Manag. 69: 24-58. https://doi.org/10.1016/j.wasman.2017.07.044
  11. Drzyzga O, Prieto A. 2019. Plastic waste management, a matter for the 'community'. Microb. Biotechnol. 12: 66-68. https://doi.org/10.1111/1751-7915.13328
  12. Almeida EL, Carrillo Rincon AF, Jackson SA, Dobson ADW. 2019. In silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est) with polycaprolactone (PCL)-degrading activity, from the marine sponge-derived strain Streptomyces sp. SM14. Front. Microbiol. 10: 2187.
  13. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196-1199. https://doi.org/10.1126/science.aad6359
  14. Wei R, Zimmermann W. 2017. Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microb. Biotechnol. 10: 1302-1307. https://doi.org/10.1111/1751-7915.12714
  15. Kawai F, Kawabata T, Oda M. 2019. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol. 103: 4253-4268. https://doi.org/10.1007/s00253-019-09717-y
  16. Bornscheuer UT. 2016. Feeding on plastic. Science 351: 1154-1155. https://doi.org/10.1126/science.aaf2853
  17. Chen CC, Han X, Ko TP, Liu W, Guo RT. 2018. Structural studies reveal the molecular mechanism of PETase. FEBS J. 285: 3717-3723. https://doi.org/10.1111/febs.14612
  18. Fecker T, Galaz-Davison P, Engelberger F, Narui Y, Sotomayor M, Parra LP, et al. 2018. Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophys J. 114: 1302-1312. https://doi.org/10.1016/j.bpj.2018.02.005
  19. Son HF, Cho IJ, Joo S, Seo H, Sagong HY, Choi SY, et al. 2019. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 9: 3519-3526.
  20. Liu B, He L, Wang L, Li T, Li C, Liu H, et al. 2018. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis. Chembiochem. 19: 1471-1475. https://doi.org/10.1002/cbic.201800097
  21. Ma Y, Yao M, Li B, Ding M, He B, Chen S, et al. 2018. Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering. Engineering 4: 888-893. https://doi.org/10.1016/j.eng.2018.09.007
  22. Kim HR, Lee HM, Yu HC, Jeon E, Lee S, Li J, Kim DH. 2020. Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (Larvae of Zophobas atratus). Environ. Sci. Technol. 54: 6987-6996. https://doi.org/10.1021/acs.est.0c01495
  23. Woo S, Song I, Cha HJ. 2020. Fast and facile biodegradation of polystyrene by the gut microbial flora of Plesiophthalmus davidis larvae. Appl. Environ. Microbiol. 86: e01361-20.
  24. Kim JW, Park SB, Tran QG, Cho DH, Choi DY, Lee YJ, et al. 2020. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microb. Cell Fact. 19: 97.
  25. Choi SS, Katsuyama Y, Bai L, Deng Z, Ohnishi Y, Kim ES. 2018. Genome engineering for microbial natural product discovery. Curr. Opin. Microbiol. 45: 53-60. https://doi.org/10.1016/j.mib.2018.02.007
  26. Kim HY, Han CY, Park JS, Oh SH, Kang SH, Kim ES, et al. 2018. Nystatin-like Pseudonocardia polyene B1, a novel disaccharide-containing antifungal heptaene antibiotic. Sci. Rep. 8: 13584.
  27. Kang HS, Kim ES. 2021. Recent advances in heterologous expression of natural product biosynthetic gene clusters in Streptomyces hosts. Curr. Opin. Biotechnol. 69: 118-127. https://doi.org/10.1016/j.copbio.2020.12.016
  28. Kim SH, Lee HN, Kim HJ, Kim ES. 2011. Transcriptome analysis of an antibiotic downregulator mutant and synergistic actinorhodin stimulation via disruption of a precursor flux regulator in Streptomyces coelicolor. Appl. Environ. Microbiol. 77: 1872-1877. https://doi.org/10.1128/AEM.02346-10
  29. Duong CTP, Lee HN, Choi SS, Lee SY, Kim ES. 2009. Functional expression of SAV3818, a putative TetR-family transcriptional regulatory gene from Streptomyces avermitilis, stimulates antibiotic production in Streptomyces species. J. Microbiol. Biotechnol. 19: 136-139. https://doi.org/10.4014/jmb.0806.387
  30. Lee HN, Kim JS, Kim P, Lee HS, Kim ES. 2013. Repression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor. Appl. Environ. Microbiol. 79: 4159-4163. https://doi.org/10.1128/AEM.00546-13
  31. Hwang YB, Lee MY, Park HJ, Han K, Kim ES. 2007. Isolation of putative polyene-producing actinomycetes strains via PCR-based genome screening for polyene-specific hydroxylase genes. Process. Biochem. 42: 102-107. https://doi.org/10.1016/j.procbio.2006.06.031
  32. Nah JH, Park SH, Yoon HM, Choi SS, Lee CH, Kim ES. 2012. Identification and characterization of wblA-dependent tmcT regulation during tautomycetin biosynthesis in Streptomyces sp. CK4412. Biotechnol. Adv. 30: 202-209. https://doi.org/10.1016/j.biotechadv.2011.05.004
  33. Park HJ, Kim ES. 2003. An inducible Streptomyces gene cluster involved in aromatic compound metabolism. FEMS Microbiol. lett. 226: 151-157. https://doi.org/10.1016/S0378-1097(03)00585-8
  34. Pyeon H, Nah HJ, Kang SH, Choi SS, Kim ES. 2017. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell. Fact. 16: 96.
  35. Kim ES, Hopwood DA, Sherman DH. 1994. Analysis of type II polyketide beta-ketoacyl synthase specificity in Streptomyces coelicolor A3 (2) by trans complementation of actinorhodin synthase mutants. J. Bacteriol. 176: 1801-1804. https://doi.org/10.1128/jb.176.6.1801-1804.1994
  36. Park HS, Kang SH, Park HJ, Kim ES. 2005. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71.
  37. Park NS, Myeong JS, Park HJ, Han KB, Kim SN, Kim ES. 2005. Characterization and culture optimization of regiospecific cyclosporin hydroxylation in rare actinomycetes species. J. Microbiol. Biotechnol. 15: 188-191.
  38. Im JH, Kim MG, Kim ES. 2007. Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system. J. Microbiol. Biotechnol. 17: 534-538.
  39. Kim CY, Park HJ, Kim ES. 2003. Heterologous expression of hybrid type II polyketide synthase system in Streptomyces species. J. Microbiol. Biotechnol. 13: 819-822.
  40. Park NS, Park HJ, Han KB, Kim ES. 2006. Heterologous expression of novel cytochrome P450 hydroxylase genes from Sebekia benihana. J. Microbiol. Biotechnol. 16: 295-298.
  41. Ma L, Du L, Chen H, Sun Y, Huang S, Kim ES, et al. 2015. Reconstitution of the in vitro activity of the cyclosporine-specific P450 hydroxylase from Sebekia benihana and development of a heterologous whole-cell biotransformation system. Appl. Environ. Microbiol. 81: 6268-6275. https://doi.org/10.1128/AEM.01353-15
  42. Choi SS, Lee HN, Park E, Lee SJ, Kim ES. 2020. Recent advances in microbial production of cis,cis-muconic acid. Biomolecules 10: 1238.
  43. Shin WS, Lee D, Lee SJ, Chun GT, Choi SS, Kim ES, et al. 2018. Characterization of a non-phosphotransferase system for cis, cis-muconic acid production in Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 499: 279-284. https://doi.org/10.1016/j.bbrc.2018.03.146
  44. Brott S, Pfaff L, Schuricht J, Schwarz JN, Bottcher D, et al. 2021. Engineering and evaluation of thermostable IsPETase variants for PET degradation. Eng. Life. Sci. 22: 192-203.
  45. Molitor R, Bollinger A, Kubicki S, Loeschcke A, Jaeger KE, Thies S. 2019. Agar plate-based screening methods for the identification of polyester hydrolysis by Pseudomonas species. Microb. Biotechnol. 13: 271-284.
  46. Nishida H, Tokiwq Y. 1993. Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments. World J. Microbiol. Biotechnol. 28: 2929-2935.  https://doi.org/10.1007/s11274-012-1103-5