DOI QR코드

DOI QR Code

Trends, Functionalities, and Prospects of Probiotics

  • Hyeon Ji, Jeon (School of Food Science and Biotechnology, Kyungpook National University) ;
  • O-Hyun, Ban (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Won Yeong, Bang (Ildong Bioscience) ;
  • Jungwoo, Yang (Ildong Bioscience) ;
  • Young Hoon, Jung (School of Food Science and Biotechnology, Kyungpook National University)
  • 투고 : 2022.10.21
  • 심사 : 2022.12.02
  • 발행 : 2022.12.28

초록

The importance of beneficial microorganisms, particularly probiotics, that coexist in the human body, is being increasingly recognized. Probiotics are representative health functional foods that provide health benefits to humans through the production of various metabolites, including short-chain fatty acids. However, the health benefits are strain-specific, and the use of each probiotic strain should follow guidelines that assure its safety. Accurate identification of the strain should be managed through genetic and phenotypic analyses of the strain. Besides, the functionality of probiotics should be disclosed in vitro and in vivo so that they can be used as legal functional ingredients (i.e., individual standards). In this review, we deal with the guidelines, including the technical factors related to probiotic strains. The common health effects of probiotic strains include proliferation of beneficial bacteria, control of harmful bacteria, and facilitation of bowel activities. Probiotics with various functionalities (e.g., body fat and cholesterol reduction, vaginal health, and improvement of skin's immune system) have been investigated as "individual standards of raw materials for health functional foods" provided by MFDS. In the future, various biotechnologies including synthetic biology can be applied to produce customized probiotics to improve human health.

키워드

과제정보

This research was supported by Kyungpook National University Development Project Research Fund, 2021.

참고문헌

  1. Hamid H, Thakur A, Thakur NS. 2021. Role of functional food components in COVID-19 pandemic: A review. Ann. Phytomed. Int. J. 10: 5240-5250. 
  2. Grand VR. 2021. Probiotics market size, share & trends analysis report by product (probiotic food & beverages, probiotic dietary supplements), by ingredient (bacteria, yeast), by end use, by distribution channel, and segment forecasts, 2021-2030. 
  3. Ministry of Food and Drug Safety. 2020. Production performance of food, etc. (food, health functional food, processed livestock products, etc.). 
  4. Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. 2021. Targeted delivery of probiotics: perspectives on research and commercialization. Probiotics Antimicrob. Proteins 14: 15-48. 
  5. Chimileski S, Kolter R. 2017. Life at the edge of sight: a photographic exploration of the microbial world. Harvard University Press. 
  6. Porter JR. 1976. Antony van Leeuwenhoek: tercentenary of his discovery of bacteria. Bacteriol. Rev. 40: 260-269.  https://doi.org/10.1128/br.40.2.260-269.1976
  7. Gest H. 2004. The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society. Notes Rec. R Soc. London 58: 187-201.  https://doi.org/10.1098/rsnr.2004.0055
  8. Hooke R. 2003. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. Courier Corporation. 
  9. Araki AS, Brazil RP, Hamilton JG, Vigoder FM. 2020. A morning with Louis Pasteur: a short history of the "clean hands". 
  10. Levine R, Evers C. 1999. The slow death of spontaneous generation (1668-1859). Disponibile in rete all'indirizzo. 
  11. Blevins SM, Bronze MS. 2010. Robert Koch and the 'golden age' of bacteriology. Int. J. Inf. Dis. 14: e744-e751.  https://doi.org/10.1016/j.ijid.2009.12.003
  12. Chen W. 2019. Lactic acid bacteria. Omics and Functional Evaluation, Springer Singapore. 
  13. Fuller, R. 1992. History and development of probiotics. In Probiotics pp. 1-8. Springer, Dordrecht. 
  14. Jeong CR, Shin HW, Yang JW, Kim SJ. 2020. Current status of domestic probiotics products and future development plan. Food Storage Process. Ind. 19: 120-133. 
  15. Vergin F. 1954. Antibiotics and probiotics. Hippokrates 25: 116-119. 
  16. Matur E, Eraslan E. 2012. The impact of probiotics on the gastrointestinal physiology. New Adv. Basic Clin. Gastroenterol. 1: 51-74. 
  17. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514.  https://doi.org/10.1038/nrgastro.2014.66
  18. Mahajan M, Manjot K. 2022. Probiotics and health benefits: A review. International Journal of Food and Nutritional Sciences, pp. 11-16. 
  19. Azad M, Kalam A, Sarker M, Li T, Yin J. 2018. Probiotic species in the modulation of gut microbiota: an overview. BioMed Res. Int. 2018: 9478630. 
  20. Adedeji OE, Chae SA, Ban O, Bang WY, Kim H, Jeon HJ, et al. 2022. Safety evaluation and anti-inflammatory activity of Lactobacillus johnsonii IDCC 9203 isolated from feces of breast-fed infants. Arch. Microbiol. 204: 470. 
  21. Bang WY, Ban OH, Lee BS, Oh S, Park C, Park MK, et al. 2021. Genomic-, phenotypic-, and toxicity-based safety assessment and probiotic potency of Bacillus coagulans IDCC 1201 isolated from green malt. J. Ind. Microbiol. Biotechnol. 48: kuab026. 
  22. Lee BS, Ban O, Bang WY, Chae SA, Oh S, Park C, et al. 2021. Safety assessment of Lactobacillus reuteri IDCC 3701 based on phenotypic and genomic analysis. Ann. Microbiol. 71: 1-6.  https://doi.org/10.1186/s13213-020-01613-5
  23. Pavan S, Desreumaux P, Mercenier A. 2003. Use of mouse models to evaluate the persistence, safety, and immune modulation capacities of lactic acid bacteria. Clin. Vacc. Immunol. 10: 696-701.  https://doi.org/10.1128/CDLI.10.4.696-701.2003
  24. Panicker AS, Ali SA, Anand S, Panjagari NR, Kumar S, Mohanty AK, et al. 2018. Evaluation of some in vitro probiotic properties of Lactobacillus fermentum Strains. J. Food Sci. Technol. 55: 2801-2807.  https://doi.org/10.1007/s13197-018-3197-8
  25. Chou LS, Weimer B. 1999. Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci. 82: 23-31.  https://doi.org/10.3168/jds.S0022-0302(99)75204-5
  26. Bang WY, Kim H, Chae SA, Yang SY, Ban OH, Kim TY, et al. 2022. A quadruple coating of probiotics for enhancing intestinal adhesion and competitive exclusion of Salmonella typhimurium. J. Med. Food 25: 213-218.  https://doi.org/10.1089/jmf.2021.K.0117
  27. Fonseca HC, de Sousa Melo D, Ramos CL, Dias DR, Schwan RF. 2021. Probiotic properties of lactobacilli and their ability to inhibit the adhesion of enteropathogenic bacteria to Caco-2 and HT-29 cells. Probiotics Antimicrob. Prot. 13: 102-112.  https://doi.org/10.1007/s12602-020-09659-2
  28. Ren D, Li C, Qin Y, Yin R, Du S, Ye F, et al. 2014. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe 30: 1-10.  https://doi.org/10.1016/j.anaerobe.2014.07.004
  29. Reque PM, Brandelli A. 2021. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci. Technol. 114: 1-10.  https://doi.org/10.1016/j.tifs.2021.05.022
  30. Wang T, Lu Y, Yan H, Li X, Wang X, Shan Y, et al. 2020. Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS-8. Bioproc. Biosys. Eng. 43: 515-528.  https://doi.org/10.1007/s00449-019-02246-y
  31. Barajas-Alvarez P, Gonzalez-Avila M, Espinosa-Andrews H. 2021. Recent advances in probiotic encapsulation to improve viability under storage and gastrointestinal conditions and their impact on functional food formulation. Food Rev. Int. 10.1080/87559129.2021.1928691. 
  32. Ministry of Food and Drug Safety. Regulations on the functional raw materials of health functional foods and the recognition of standardsand standards [Internet]. 2019 [cited 2020 May 7]. No. 2019-69. 
  33. Kajander K, Myllyluoma E, Rajilic-stojanovic M, Kyronpalo S, Rasmussen M, Jarvenpaa S, et al. 2008. Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment. Pharmacol. Ther. 27: 48-57.  https://doi.org/10.1111/j.1365-2036.2007.03542.x
  34. Liu Y, Tran DQ, Rhoads JM. 2018. Probiotics in disease prevention and treatment. J. Clin. Pharmacol. 58: S164-S179.  https://doi.org/10.1002/jcph.1121
  35. Tavakoli A, Markoulli M, Papas E, Flanagan J. 2022. The impact of probiotics and prebiotics on dry eye disease signs and symptoms. J. Clin. Med. 11: 4889. 
  36. Huidrom S, Beg MA, Masood T. 2021. Post-menopausal osteoporosis and probiotics. Curr. Drug Targets 22: 816-822. 
  37. Corbett GA, Crosby A, McAuliffe FM. 2021. Probiotic therapy in couples with infertility: A systematic review. Eur. J. Obst. Gynecol. Reprod. Biol. 256: 95-100.  https://doi.org/10.1016/j.ejogrb.2020.10.054
  38. Dixon A, Robertson K, Yung A, Que M, Randall H, Wellalagodage D, et al. 2020. Efficacy of probiotics in patients of cardiovascular disease risk: A systematic review and meta-analysis. Curr. Hypertens. Rep. 22: 74. 
  39. Feng T, Wang J. 2020. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes 12: 1801944. 
  40. Wicinski M, Gebalski J, Golebiewski J, Malinowski B. 2020. Probiotics for the treatment of overweight and obesity in humans-a review of clinical trials. Microorganisms 8: 1148. 
  41. Amin N, Boccardi V, Taghizadeh M, Jafarnejad S. 2020. Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway. Aging Clin. Exp. Res. 32: 363-371.  https://doi.org/10.1007/s40520-019-01223-5
  42. Marotta A, Sarno E, Del Casale A, Pane M, Mogna L, Amoruso A, et al. 2019. Effects of probiotics on cognitive reactivity, mood, and sleep quality. Front. Psychiatry 10: 164. 
  43. Koutnikova H, Genser B, Monteiro-Sepulveda M, Faurie JM, Rizkalla S, Schrezenmeir J, et al. 2019. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 9: e017995. 
  44. Ministry of Food and Drug Safety. 2016. Regulations concerning recognition of functional ingredients and standards and specifications for health functional foods. Article 16. 
  45. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174: 1388-1405.  https://doi.org/10.1016/j.cell.2018.08.041
  46. Xiao Y, Zhai Q, Zhang H, Chen W, Hill C. 2021. Gut colonization mechanisms of Lactobacillus and Bifidobacterium: an argument for personalized designs. Annu. Rev. Food Sci. Technol. 12: 213-233.  https://doi.org/10.1146/annurev-food-061120-014739
  47. Singh TP, Natraj BH. 2021. Next-generation probiotics: a promising approach towards designing personalized medicine. Crit. Rev. Microbiol. 47: 479-498.  https://doi.org/10.1080/1040841X.2021.1902940
  48. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14: 491-502.  https://doi.org/10.1038/nrgastro.2017.75
  49. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. 2019. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8: 92. 
  50. Martyniak A, Medynska-Przeczek A, Wedrychowicz A, Skoczen S, Tomasik PJ. 2021. Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD. Biomolecules 11: 1903. 
  51. Nataraj BH, Ali SA, Behare PV, Yadav H. 2020. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Micro. Cell Fact. 19: 168. 
  52. Zolkiewicz J, Marzec A, Ruszczynski M, Feleszko W. 2020. Postbiotics-a step beyond pre-and probiotics. Nutrients 12: 2189. 
  53. Shenderov BA. 2013. Metabiotics: novel idea or natural development of probiotic conception. Microbial Ecol. Health Dis. 24: 20399. 
  54. Tang J, Tan CY, Oresic M, Vidal-Puig A. 2009. Integrating post-genomic approaches as a strategy to advance our understanding of health and disease. Genome Med. 1: 35. 
  55. Bell JS, Spencer JI, Yates RL, Yee SA, Jacobs BM, DeLuca GC. 2019. Invited Review: From nose to gut-the role of the microbiome in neurological disease. Neuropathol. Appl. Neurobiol. 45: 195-215.  https://doi.org/10.1111/nan.12520
  56. Gershon MD. 1999. The enteric nervous system: a second brain. Hosp. Pract. 34: 31-52.  https://doi.org/10.3810/hp.1999.07.153
  57. Martin AM, Sun EW, Keating DJ. 2020. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J. Endocrinol. 244: R1-R15.  https://doi.org/10.1530/joe-19-0399
  58. Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. 2021. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 95: 35-53.  https://doi.org/10.1016/j.nutres.2021.09.001
  59. Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. 2020. Gut microbiota and immune system interactions. Microorganisms 8: 1587. 
  60. Banning M. 2006. Bacteria and the gastrointestinal tract: beneficial and harmful effects. Br. J. Nurs. 15: 144-149.  https://doi.org/10.12968/bjon.2006.15.3.20512
  61. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. 2019. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7: 14. 
  62. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. 2016. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469: 967-977.  https://doi.org/10.1016/j.bbrc.2015.12.083
  63. Grice EA, Segre JA. 2012. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13: 151-170.  https://doi.org/10.1146/annurev-genom-090711-163814
  64. Wang X, Zhang P, Zhang X. 2021. Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules 26: 6076. 
  65. Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, et al. 2022. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int. J. Mol. Sci. 23: 1105. 
  66. He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, et al. 2020. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci. 21: 6356. 
  67. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54: 2325-2340.  https://doi.org/10.1194/jlr.R036012
  68. Duan K, Sibley CD, Davidson CJ, Surette MG. 2009. Chemical interactions between organisms in microbial communities. Contrib. Microbiol. 16: 1-17.  https://doi.org/10.1159/000219369
  69. Thursby E, Juge N. 2017. Introduction to the human gut microbiota. Biochem. J. 474: 1823-1836.  https://doi.org/10.1042/BCJ20160510
  70. Mohajeri MH, La Fata G, Steinert RE, Weber P. 2018. Relationship between the gut microbiome and brain function. Nutr. Rev. 76: 481-496.  https://doi.org/10.1093/nutrit/nuy009
  71. Shi N, Li N, Duan X, Niu H. 2017. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. 4: 14. 
  72. Oleskin AV, Shenderov BA. 2019. Probiotics and psychobiotics: the role of microbial neurochemicals. Probiotics Antimicrob. Prot. 11: 1071-1085.  https://doi.org/10.1007/s12602-019-09583-0
  73. Goodrich JK, Davenport ER, Clark AG, Ley RE. 2017. The relationship between the human genome and microbiome comes into view. Annu. Rev. Genet. 51: 413. 
  74. Schmidt V, Enav H, Spector TD, Youngblut ND, Ley RE. 2020. Strain-level analysis of Bifidobacterium spp. from gut microbiomes of adults with differing lactase persistence genotypes. Msystems 5: e00911-20. 
  75. Hills Jr RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. 2019. Gut microbiome: profound implications for diet and disease. Nutrients 11: 1613. 
  76. Foster JA, Rinaman L, Cryan JF. 2017. Stress the gut-brain axis: regulation by the microbiome. Neurobiol. Stress 7: 124-136.  https://doi.org/10.1016/j.ynstr.2017.03.001
  77. Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. 2017. Gut microbiota's effect on mental health: The gut-brain axis. Clin. Pract 7: 987. 
  78. Saker A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. 2016. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 39: 763-781.  https://doi.org/10.1016/j.tins.2016.09.002
  79. Sudo N. 2019. Role of gut microbiota in brain function and stress-related pathology. Biosci. Microbta Food Health 38: 75-80.  https://doi.org/10.12938/bmfh.19-006
  80. Tang W, Zhu H, Feng Y, Guo R, Wan D. 2020. The impact of gut microbiota disorders on the blood-brain barrier. Infect. Drug Resis. 13: 3351. 
  81. Bojanova DP, Bordenstein SR. 2016. Fecal transplants: what is being transferred?. PLoS Biol. 14: e1002503. 
  82. Ramai D, Zakhia K, Ofosu A, Ofori E, Reddy M. 2019. Fecal microbiota transplantation: donor relation, fresh or frozen, delivery methods, cost-effectiveness. Ann. Gastroenterol. 32: 30. 
  83. Stanley, F. 2016. Fecal Transplants in the "Good Old Days" In the Company of Microbes: Ten Years of Small Things Considered, Ed. Schaechter E., pp. 106-109. https://onlinelibrary.wiley.com/doi/abs/10.1128/9781555819606.ch26. 
  84. Floch MH. 2010. Fecal bacteriotherapy, fecal transplant, and the microbiome. J. Clin. Gastroenterol. 44: 529-530.  https://doi.org/10.1097/MCG.0b013e3181e1d6e2
  85. Khoruts A, Sadowsky MJ. 2016. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 13: 508-516.  https://doi.org/10.1038/nrgastro.2016.98
  86. Tan P, Li X, Shen J, Feng Q. 2020. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update. Front. Pharmacol. 11: 574533.