DOI QR코드

DOI QR Code

Inhibition of Quorum Sensing Regulated Virulence Factors and Biofilm Formation by Eucalyptus globulus against Multidrug-Resistant Pseudomonas aeruginosa

  • Sagar, Pankaj Kumar (Department of Biotechnology, Bundelkhand University) ;
  • Sharma, Poonam (Department of Zoology, Indira Gandhi National Tribal University (A Central University)) ;
  • Singh, Rambir (Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University (A Central University))
  • Received : 2020.09.12
  • Accepted : 2021.12.13
  • Published : 2022.03.31

Abstract

Objectives: The quorum-sensing-inhibitory and anti-biofilm activities of the methanol extract of E. globulus leaves were determined against clinically isolated multidrug-resistant Pseudomonas aeruginosa. Methods: The preliminary anti-quorum-sensing (AQS) activity of eucalyptus was investigated against a biosensor strain Chromobacterium violaceum ATCC 12472 (CV12472) by using the agar well diffusion method. The effect of sub-minimum inhibitory concentrations (sub-MICs) of the methanol extract of eucalyptus on different quorum-sensing-regulated virulence factors, such as swarming motility, pyocyanin pigment, exopolysaccharide (EPS), and biofilm formation, against clinical isolates (CIs 2, 3, and 4) and reference PA01 of Pseudomonas aeruginosa were determined using the swarm diameter (mm)-measurement method, chloroform extraction method, phenol (5%)-sulphuric acid (concentrated) method, and the microtiter plate assay respectively, and the inhibition (%) in formation were calculated. Results: The preliminary AQS activity (violacein pigment inhibition) of eucalyptus was confirmed against Chromobacterium violaceum ATCC 12472 (CV12472). The eucalyptus extract also showed concentration-dependent inhibition (%) of swarming motility, pyocyanin pigment, EPS, and biofilm formation in different CIs and PA01 of P. aeruginosa. Conclusion: Our results revealed the effectiveness of the E. globulus extract for the regulation of quorum-sensing-dependent virulence factors and biofilm formation at a reduced dose (sub-MICs) and suggest that E. globulus may be a therapeutic agent for curing and controlling bacterial infection and thereby reducing the possibility of resistance development in pathogenic strains.

Keywords

Acknowledgement

The authors would like to thank the Central Council for Research in Ayurvedic Sciences-Regional Ayurveda Research Institute, Jhansi (Uttar Pradesh), India for providing and authenticating the Eucalyptus globulus leaves used in this research work. The authors also thank to the Department of Microbiology, Sarojini Naidu Medical College, Agra (Uttar Pradesh), India for providing the CIs of P. aeruginosa and the Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh (Uttar Pradesh), India for providing Chromobacterium violaceum ATCC 12472 (CV12472) and the reference strain (PA01) for this study. The authors gratefully thank the Innovation centre, Bundelkhand University, Jhansi (Uttar Pradesh), India for facilitating the equipment for experiments.

References

  1. Boyle EM, Ainsworth JR, Levin AV, Campbell AN, Watkinson M. Ophthalmic Pseudomonas infection in infancy. Arch Dis Child Fetal Neonatal Ed. 2001;85(2):F139-40. https://doi.org/10.1136/fn.85.2.F139
  2. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165(7):867-903. https://doi.org/10.1164/ajrccm.165.7.2105078
  3. Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogenhost interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005;171(11):1209-23. https://doi.org/10.1164/rccm.200408-1044SO
  4. Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527. https://doi.org/10.7573/dic.212527
  5. Dandekar AA, Chugani S, Greenberg EP. Bacterial quorum sensing and metabolic incentives to cooperate. Science. 2012;338(6104):264-6. https://doi.org/10.1126/science.1227289
  6. Hentzer M, Givskov M, Parsek MR. Targeting quorum sensing for treatment of chronic bacterial biofilm infections. Lab Med. 2002;33(4):295-306. https://doi.org/10.1309/EYEV-WT6T-GKHE-C8LM
  7. de Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2009;11(2):279-88. https://doi.org/10.1111/j.1462-2920.2008.01792.x
  8. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 1999;96(20):11229-34. https://doi.org/10.1073/pnas.96.20.11229
  9. Venturi V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev. 2006;30(2):274-91. https://doi.org/10.1111/j.1574-6976.2005.00012.x
  10. Adonizio A, Kong KF, Mathee K. Inhibition of quorum sensingcontrolled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother. 2008;52(1):198-203. https://doi.org/10.1128/AAC.00612-07
  11. Rasmussen TB, Givskov M. Quorum sensing inhibitors: a bargain of effects. Microbiology (Reading). 2006;152(Pt 4):895-904. https://doi.org/10.1099/mic.0.28601-0
  12. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881-90. https://doi.org/10.3201/eid0809.020063
  13. Chan KG, Atkinson S, Mathee K, Sam CK, Chhabra SR, Camara M, et al. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol. 2011;11:51. https://doi.org/10.1186/1471-2180-11-51
  14. Ghosh R, Tiwary BK, Kumar A, Chakraborty R. Guava leaf extract inhibits quorum-sensing and Chromobacterium violaceum induced lysis of human hepatoma cells: whole transcriptome analysis reveals differential gene expression. PLoS One. 2014;9(9):e107703. https://doi.org/10.1371/journal.pone.0107703
  15. Husain FM, Ahmad I, Al-Thubiani AS, Abulreesh HH, AlHazza IM, Aqil F. Leaf extracts of Mangifera indica L. Inhibit quorum sensing - regulated production of virulence factors and biofilm in test bacteria. Front Microbiol. 2017;8:727. https://doi.org/10.3389/fmicb.2017.00727
  16. Alreshidi M, Noumi E, Bouslama L, Ceylan O, Veettil VN, Adnan M, et al. Phytochemical screening, antibacterial, antifungal, antiviral, cytotoxic, and anti-quorum-sensing properties of Teucrium polium L. Aerial Parts Methanolic Extract. Plants (Basel). 2020;9(11):1418.
  17. Sagar PK, Sharma P, Singh R. Antibacterial efficacy of different combinations of clove, eucalyptus, ginger, and selected antibiotics against clinical isolates of Pseudomonas aeruginosa. Ayu. 2020;41(2):123-9. https://doi.org/10.4103/ayu.AYU_101_19
  18. Sagar PK, Singh R. Anti-quorum sensing activity of clove (Syzygium aromaticum) bud extract and its combined efficacy with ceftazidime against multidrug-resistant Pseudomonas aeruginosa. Res J Biotechnol. 2021;16(3):75-82.
  19. Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419-26. https://doi.org/10.1016/j.tim.2011.04.005
  20. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92. https://doi.org/10.1016/j.biotechadv.2018.11.013
  21. Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. 2003;5(13):1213-9. https://doi.org/10.1016/j.micinf.2003.08.009
  22. Gonzalez-Burgos E, Liaudanskas M, Viskelis J, Zvikas V, Janulis V, Gomez-Serranillos MP. Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. J Food Drug Anal. 2018;26(4):1293-302. https://doi.org/10.1016/j.jfda.2018.05.010
  23. Bachir RG, Benali M. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac J Trop Biomed. 2012;2(9):739-42. https://doi.org/10.1016/S2221-1691(12)60220-2
  24. Ghaffar A, Yameen M, Kiran S, Kamal S, Jalal F, Munir B, et al. Chemical composition and in-vitro evaluation of the antimicrobial and antioxidant activities of essential oils extracted from seven Eucalyptus species. Molecules. 2015;20(11):20487-98. https://doi.org/10.3390/molecules201119706
  25. Mulyaningsih S, Sporer F, Reichling J, Wink M. Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm Biol. 2011;49(9):893-9. https://doi.org/10.3109/13880209.2011.553625
  26. Luis A, Duarte A, Gominho J, Domingues F, Duarte AP. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind Crops Prod. 2016;79:274-82. https://doi.org/10.1016/j.indcrop.2015.10.055
  27. Merghni A, Noumi E, Hadded O, Dridi N, Panwar H, Ceylan O, et al. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb Pathog. 2018;118:74-80. https://doi.org/10.1016/j.micpath.2018.03.006
  28. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. 9th ed. Wayne: CLSI; 2012.
  29. Zahin M, Hasan S, Aqil F, Khan MS, Husain FM, Ahmad I. Screening of certain medicinal plants from India for their antiquorum sensing activity. Indian J Exp Biol. 2010;48(12):1219-24.
  30. Bala A, Kumar R, Harjai K. Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections. J Med Microbiol. 2011;60(Pt3):300-6. https://doi.org/10.1099/jmm.0.025387-0
  31. Essar DW, Eberly L, Hadero A, Crawford IP. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol. 1990;172(2):884-900. https://doi.org/10.1128/jb.172.2.884-900.1990
  32. Huston AL, Methe B, Deming JW. Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl Environ Microbiol. 2004;70(6):3321-8. https://doi.org/10.1128/AEM.70.6.3321-3328.2004
  33. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350-6. https://doi.org/10.1021/ac60111a017
  34. O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998;28(3):449-61. https://doi.org/10.1046/j.1365-2958.1998.00797.x
  35. Adonizio AL, Downum K, Bennett BC, Mathee K. Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol. 2006;105(3):427-35. https://doi.org/10.1016/j.jep.2005.11.025
  36. Husain FM, Ahmad I, Asif M, Tahseen Q. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J Biosci. 2013;38(5):835-44. https://doi.org/10.1007/s12038-013-9385-9
  37. Khan MS, Zahin M, Hasan S, Husain FM, Ahmad I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett Appl Microbiol. 2009;49(3):354-60. https://doi.org/10.1111/j.1472-765X.2009.02666.x
  38. Krishnan T, Yin WF, Chan KG. Inhibition of quorum sensingcontrolled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract. Sensors (Basel). 2012;12(4):4016-30. https://doi.org/10.3390/s120404016
  39. Packiavathy IASV, Agilandeswari P, Musthafa KS, Pandian SK, Ravi AV. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int. 2012;45(1):85-92. https://doi.org/10.1016/j.foodres.2011.10.022
  40. Sankar Ganesh P, Ravishankar Rai V. Attenuation of quorumsensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. J Tradit Complement Med. 2017;8(1):170-7. https://doi.org/10.1016/j.jtcme.2017.05.008
  41. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564-82. https://doi.org/10.1128/cmr.12.4.564
  42. Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol. 2008;7(12):1797-806. https://doi.org/10.5897/AJB07.613
  43. Winstanley C, Fothergill JL. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett. 2009;290(1):1-9. https://doi.org/10.1111/j.1574-6968.2008.01394.x
  44. Musthafa KS, Ravi AV, Annapoorani A, Packiavathy IS, Pandian SK. Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the N-acyl-homoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy. 2010;56(4):333-9. https://doi.org/10.1159/000320185
  45. Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol. 1999;34(3):586-95. https://doi.org/10.1046/j.1365-2958.1999.01624.x
  46. Kohler T, Curty LK, Barja F, van Delden C, Pechere JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol. 2000;182(21):5990-6. https://doi.org/10.1128/JB.182.21.5990-5996.2000
  47. Chen L, Wen YM. The role of bacterial biofilm in persistent infections and control strategies. Int J Oral Sci. 2011;3(2):66-73. https://doi.org/10.4248/IJOS11022
  48. Dolatabadi S, Moghadam HN, Mahdavi-Ourtakand M. Evaluating the anti-biofilm and antibacterial effects of Juglans regia L. extracts against clinical isolates of Pseudomonas aeruginosa. Microb Pathog. 2018;118:285-9. https://doi.org/10.1016/j.micpath.2018.03.055