Acknowledgement
This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM).
References
- AASHTO (2007), Standard specifications for highway bridge, 18th edition. American Association of State Highway and Transportation Officials, Washington DC, USA.
- ASTM (2011), ASTM D6066-11: Standard practice for determining the normalized penetration resistance of sands for evaluation of liquefaction potential. American Society for Testing and Materials International, West Conshohocken, PA, USA.
- ASTM (2018), ASTM D1586/D1586M-18: Standard test method for standard penetration test (SPT) and split-barrel sampling of soils. American Society for Testing and Materials International, West Conshohocken, PA, USA.
- Anbazhagan, P., Sheikh, M.N. and Parihar, A. (2013), "Influence of rock depth on seismic site classification for shallow bedrock regions", Nat. Hazards Rev., 14(2), 108-121. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000088.
- Bajaj, K. and Anbazhagan, P. (2019), "Seismic site classification and correlation between VS and SPT-N for deep soil sites in Indo-Gangetic Basin", J. Appl. Geophys., 163, 55-72. https://doi.org/10.1016/j.jappgeo.2019.02.011.
- Bowles, J.E. (1997), Foundation Analysis and Design. McGraw-Hill, Singapore.
- BSI (2007), BS EN ISO 22476-3:2005+A1:2001: Geotechnical investigation and testing-Field testing-Part 3: Standard penetration test. British Standards Institution, London, UK.
- Cho, H.I., Sun, C.G., Kim, J.H. and Kim, D.S. (2018), "OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity", Geomech. Eng., 15(4), 987-995. https://doi.org/10.12989/gae.2018.15.4.987.
- dos Santos, M.D. and Bicalho, K.V. (2017), "Proposals of SPT-CPT and DPL-CPT correlations for sandy soils in Brazil", J. Rock Mech. Geotech. Eng., 9(6), 1152-1158. https://doi.org/10.1016/j.jrmge.2017.08.001.
- Dung, N.T., Chung, S.G., Kim, S.R. and Baek, S.H. (2011), "Applicability of the SPT-based methods for estimating toe bearing capacity of driven PHC piles in the thick deltaic deposits", KSCE J. Civil Eng., 15(6), 1023-1031. https://doi.org/10.1007/s12205-011-0801-0.
- ErzIn, Y. and Gul, T.O. (2013), "The use of neural networks for the prediction of the settlement of pad footings on cohesionless soils based on standard penetration test", Geomech. Eng., 5(6), 541-564. https://doi.org/10.12989/gae.2013.5.6.541.
- FHWA (2006), Soils and foundations: Reference manual -Volume I. National Highway Institute, Federal Highways Administration, Washington DC, USA
- Ghali, M., Chekired, M. and Karray, M. (2020), "Framework to improve the correlation of SPT-N and geotechnical parameters in sand", Acta Geotechnica, 15(3), 735-759. https://doi.org/10.1007/s11440-018-0745-3.
- Goh, A.T.C., Zhang, R.H., Wang, W., Wang, L., Liu, H.L. and Zhang, W.G. (2020), "Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils", Acta Geotechnica, 15(5), 1259-1272. https://doi.org/10.1007/s11440-019-00843-5.
- Gui, M.W., Soga, K., Bolton, M.D. and Hamelin, J.P. (2002), "Instrumented borehole drilling for subsurface investigation", J. Geotech. Geoenviron. Eng., 128(4), 283-291. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:4(283).
- Guo, W.D. (2012), Theory and Practice of Pile Foundations, 1st edition. CRC Press, Boca Raton, FL, USA
- Han, L., Wang, L., Ding, X., Wen, H., Yuan, X. and Zhang, W. (2022), "Similarity quantification of soil parametric data and sites using confidence ellipses", Geosci. Frontiers, 13(1), 101280. https://doi.org/10.1016/j.gsf.2021.101280.
- Jeong, S., Park, J., Ko, J. and Kim, B. (2017), "Analysis of soil resistance on drilled shafts using proposed cyclic p-y curves in weathered soil", Geomech. Eng., 12(3), 505-522. https://doi.org/10.12989/gae.2017.12.3.505.
- KSA (2017), KS F 2307: Standard test method for standard penetration test. Korea Standards Association, Seoul, Korea
- Kulhawy, F.H. and Mayne, P.W. (1990), "Manual on estimating soil properties for foundation design", Electric Power Research Institute, Palo Alto, CA, USA.
- Liao, S.S.C. and Whitman, R.V. (1986), "Overburden correction factors for SPT in sand", J. Geotech. Eng., 112(3), 373-377. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(373).
- Matsumoto, T., Phan, L.T., Oshima, A. and Shimono, S. (2015), "Measurements of driving energy in SPT and various dynamic cone penetration tests", Soils Found., 55(1), 201-212. https://doi.org/10.1016/j.sandf.2014.12.016.
- Mujtaba, H., Farooq, K., Sivakugan, N. and Das, B.M. (2018), "Evaluation of relative density and friction angle based on SPT-N values", KSCE J. Civil Eng., 12(2), 572-581. https://doi.org/10.1007/s12205-017-1899-5.
- Muduli, P.K. and Das, S.K. (2015), "Model uncertainty of SPT-based method for evaluation of seismic soil liquefaction potential using multi-gene genetic programming", Soils Found., 55(2), 258-275. https://doi.org/10.1016/j.sandf.2015.02.003.
- Oh, S. and Sun, C.G. (2008), "Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam", Environ. Geol., 54(1), 31-42. https://doi.org/10.1007/s00254-007-0790-y.
- Robert, Y. (1997), "A few comments on pile design", Can. Geotech. J., 34(4), 560-567. https://doi.org/10.1139/t97-024.
- Rogers, J.D. (2006), "Subsurface exploration using the standard penetration test and the cone penetration test", Environ. Eng. Geosci., 12(2), 161-179. https://doi.org/10.2113/12.2.161.
- Seo, M.W., Olson, S.M., Sun, C.G. and Oh, M.H. (2012), "Evaluation of liquefaction potential index along western coast of South Korea using SPT and CPT", Mar. Georesour. Geotech., 30(3), 234-260. https://doi.org/10.1080/1064119X.2011.614322.
- Skempton, A.W. (1986), "Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation", Geotechnique, 36(3), 425-447. https://doi.org/10.1680/geot.1986.36.3.425.
- Sun, C.G. (2015), "Determination of mean shear wave velocity to 30 m depth for site classification using shallow depth shear wave velocity profile in Korea", Soil Dyn. Earthq. Eng., 73, 17-28. https://doi.org/10.1016/j.soildyn.2015.02.011.
- Sun, C.G., Cho, C.S., Son, M. and Shin, J.S. (2013), "Correlations between shear wave velocity and in-situ penetration test results for Korean soil deposits", Pure Appl. Geophys., 170(3), 271-281. https://doi.org/10.1007/s00024-012-0516-2.
- Sun, C.G., Kim, B.H., Park, K.H. and Chung, C.K. (2015), "Geotechnical comparison of weathering degree and shear wave velocity in the decomposed granite layer in Hongseong, South Korea", Environ. Earth Sci., 74(9), 6901-6917. https://doi.org/10.1007/s12665-015-4692-0.
- Sun, C.G., Kim, D.S. and Chung, C.K. (2005), "Geologic site conditions and site coefficients for estimating earthquake ground motions in the inland areas of Korea", Eng. Geol., 81(4), 446-469. https://doi.org/10.1016/j.enggeo.2005.08.002.
- Yoon, S., Lee, S.R., Kim, Y.T. and Go, G.H. (2015), "Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis", Geomech. Eng., 23(3), 245-259. https://doi.org/10.12989/gae.2020.23.3.245.
- Zaid, M., Sadique, M.R., Alam, M.M. and Samanta, M. (2020), "Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite", Geomech. Eng., 9(1), 101-113. https://doi.org/10.12989/gae.2015.9.1.101.
- Zhang, R., Zhang, W. and Goh, A.T.C. (2021), "Assessment of wall deflections and ground settlements for braced excavations subjected to groundwater drawdown: Numerical simulations and design charts", ISSMGE Int. J. Geoeng. Case Histories, 6(2), 67-80. https://dx.doi.org/10.4417/IJGCH-06-02-04.
- Zhang, W.G., Zhang, R.H., Han, L. and Goh, A.T.C. (2019), "Engineering properties of the Bukit Timah Granitic residual soil in Singapore", Undergr. Sp., 4(2), 98-108. https://doi.org/10.1016/j.undsp.2018.07.001.