DOI QR코드

DOI QR Code

Anticancer activity of chloroform extract of Citrus unshiu Markovich peel against glioblastoma stem cells

교모세포종 암줄기세포에 대한 진피 소수성 추출물의 항암 활성

  • Kim, Yu Jin (Department of Pharmaceutical Engineering & Biotechnology, Sun Moon University) ;
  • Sim, Ye Eun (Department of Pharmaceutical Engineering & Biotechnology, Sun Moon University) ;
  • Jung, Hye Jin (Department of Pharmaceutical Engineering & Biotechnology, Sun Moon University)
  • 김유진 (선문대학교 제약생명공학과) ;
  • 심예은 (선문대학교 제약생명공학과) ;
  • 정혜진 (선문대학교 제약생명공학과)
  • Received : 2021.10.15
  • Accepted : 2021.11.29
  • Published : 2022.02.28

Abstract

Glioblastoma is the most common primary malignant brain tumor and has an extremely poor prognosis. Glioblastoma stem cells (GSCs) contribute to tumor initiation, recurrence, and resistance to therapy, and are thus a key therapeutic target. The peel of Citrus unshiu Markovich has been used in traditional medicine in East Asia to treat various diseases. In this study, we investigated the anticancer activity and molecular mechanism of the chloroform extract of this natural product (CECU) in U87MG GSCs. The results show that CECU inhibited the proliferation, tumorsphere formation, and migration of U87MG GSCs by causing cell cycle arrest at the G0/G1 phase and apoptosis. In addition, CECU downregulated key cancer stemness regulators, including CD133, Oct4, Nanog, integrin α6, ALDH1A1, and STAT3 signaling in U87MG GSCs. Furthermore, CECU significantly suppressed in vivo tumor growth of U87MG GSCs in a chorioallantoic membrane model. Therefore, CECU can be utilized as a natural medicine for the prevention and treatment of glioblastoma.

본 연구에서는 진피 소수성 추출물(CECU)의 U87MG 교모세포종 암줄기세포에 대한 항암 활성을 확인하였다. 그 결과, CECU는 25-200 ㎍/mL의 농도 범위에서 U87MG 교모세포종 암줄기세포의 증식, 종양구체 형성과 이동능력을 유의적으로 저해하였다. 특히, CECU는 G0/G1기에서 세포주기 정지와 세포사멸을 유도하여 교모세포종 암줄기세포의 증식을 억제할 수 있었다. 게다가, 교모세포종 암줄기세포에 대한 CECU의 항암 활성은 CD133, Oct4, Nanog, Integrin α6, ALDH1A1과 같은 줄기세포능 조절인자들의 발현과 STAT3 신호전달경로를 저해함으로써 유도된 것임을 확인하였다. 마지막으로, CAM assay를 통해 CECU가 U87MG 교모세포종 암줄기세포의 in vivo 종양 형성을 효과적으로 억제함을 입증하였다. 따라서, 본 연구는 진피 소수성 추출물이 주요 stemness marker들의 발현과 핵심 stemness 조절 신호전달경로를 억제함으로써 U87MG 교모세포종 암줄기세포에 대한 항암 활성을 나타냄을 입증하여, 교모세포종의 예방 및 치료를 위한 천연물 소재로서의 활용 가능성을 새롭게 제시하였다.

Keywords

Acknowledgement

본 논문은 한국연구재단 기초연구사업(NRF-2019R1A2C1009033, NRF-2021R1I1A3050093)의 지원에 의해 이루어진 것임.

References

  1. Ahn KI, Choi EO, Kwon DH, HwangBo H, Kim MY, Kim HJ, Ji SY, Hong SH, Jeong JW, Park C, Kim ND, Kim WJ, Choi YH. Induction of apoptosis by ethanol extract of Citrus unshiu Markovich peel in human bladder cancer T24 cells through ROS-mediated inactivation of the PI3K/ Akt pathway. Biosci. Trends 11: 565-573 (2017) https://doi.org/10.5582/bst.2017.01218
  2. Cha BC. Changes in the constituents and antioxidant activity in accordance with the processing conditions of Citrus unshiu Markovich. Kor. J. Pharmacogn. 46: 23-30 (2015)
  3. Choi YS, Han JM, Kang YJ, Jung HJ. Chloroform extract of Citrus unshiu Markovich peel induces apoptosis and inhibits stemness in HeLa human cervical cancer cells. Mol. Med. Rep. 23: 86 (2020) https://doi.org/10.3892/mmr.2020.11727
  4. Choi SH, Kim HG. Characteristics of cancer stem cells and immune checkpoint inhibition. J. Life Sci. 29: 499-508 (2019) https://doi.org/10.5352/JLS.2019.29.4.499
  5. Davis ME. Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20: S2-8 (2016) https://doi.org/10.1188/16.CJON.S2.3-7
  6. Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep. 50: 117-125 (2017) https://doi.org/10.5483/BMBRep.2017.50.3.222
  7. Hyon JS, Kang SM, Mahinda S, Koh WJ, Yang TS, Oh MC, Oh CK, Jeon YJ, Kim SH. Antioxidative activities of extracts from dried Citrus sunki and C. unshiu peels. J. Korean Soc. Food Sci. Nutr. 39: 1-7 (2010) https://doi.org/10.3746/JKFN.2010.39.1.001
  8. Kim MY, Bo HH, Choi EO, Kwon DH, Kim HJ, Ahn KI, Ji SY, Jeong JW, Park SH, Hong SH, Kim GY, Park C, Kim HS, Moon SK, Yun SJ, Kim WJ, Choi YH. Induction of apoptosis by Citrus unshiu peel in human breast cancer MCF-7 cells: involvement of ROS-dependent activation of AMPK. Biol. Pharm. Bull. 41: 713-721 (2018) https://doi.org/10.1248/bpb.b17-00898
  9. Kim B, Jung N, Lee S, Sohng JK, Jung HJ. Apigenin inhibits cancer stem cell-like phenotypes in human glioblastoma cells via suppression of c-Met signaling. Phytother. Res. 30: 1833-1840 (2016) https://doi.org/10.1002/ptr.5689
  10. Kinghorn AD, Chin YW, Swanson SM. Discovery of natural product anticancer agents from biodiverse organisms. Curr. Opin. Drug Discov. Devel. 12: 189-196 (2009)
  11. Lee G, Hall RR, Ahmed AU. Cancer stem cells: cellular plasticity, niche, and its clinical relevance. J. Stem Cell Res. Ther. 6: 363 (2016)
  12. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391-403 (2006) https://doi.org/10.1016/j.ccr.2006.03.030
  13. Mangal M, Sagar P, Singh H, Raghava GP, Agarwal SM. NPACT: Naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res. 41: D1124-1129 (2012) https://doi.org/10.1093/nar/gks1047
  14. Manthey JA, Grohmann K. Phenolics in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J. Agric. Food Chem. 49: 3268-3273 (2001) https://doi.org/10.1021/jf010011r
  15. McCord M, Mukouyama Y, Gilbert MR, Jackson S. Targeting WNT signaling for multifaceted glioblastoma therapy. Front. Cell. Neurosci. 11: 318 (2017)
  16. Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev. Res. (Phila.) 7: 1081-1107 (2014) https://doi.org/10.1158/1940-6207.CAPR-14-0136
  17. Mitchell K, Troike K, Silver DJ, Lathia JD. The evolution of the cancer stem cell state in glioblastoma: emerging insights into the next generation of functional interactions. Neuro Oncol. 23: 199-213 (2021) https://doi.org/10.1093/neuonc/noaa259
  18. Oh YC, Cho WK, Jeong YH, Im GY, Yang MC, Hwang YH, Ma JY. Anti-inflammatory effect of Citrus unshiu peel in LPS-stimulated RAW 264.7 macrophage cells. Am. J. Chin. Med. 40: 611-629 (2012) https://doi.org/10.1142/S0192415X12500462
  19. Peitzsch, C, Tyutyunnykova A, Pantel K, Dubrovska A. Cancer stem cells: The root of tumor recurrence and metastases. Semin. Cancer Biol. 44: 10-24 (2017) https://doi.org/10.1016/j.semcancer.2017.02.011
  20. Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, McLendon RE, Herndon II JE, Jones LW, Kirkpatrick JP, Friedman AH, Vredenburgh JJ, Bigner DD, Friedman HS. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J. Natl. Compr. Canc. Netw. 9: 414-427 (2011) https://doi.org/10.6004/jnccn.2011.0038
  21. Sundar SJ, Hsieh JK, Manjila S, Lathia JD, Sloan A. The role of cancer stem cells in glioblastoma. Neurosurg. Focus 37: E6 (2014)
  22. Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, Shamaileh HA, Yin W, Zhou SF, Zhao X, Duan W. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget 6: 44191-44206 (2015) https://doi.org/10.18632/oncotarget.6176