과제정보
The CNPq and CAPES financially supported the research described in this paper.
참고문헌
- ABAQUS (2011), Standard User's Manual, Version 6.11, Hibbit, Karlsson and Sorensen Inc, Pawtucket, RI, USA.
- Abu-Sena, A.B., Shaaban, I.G., Soliman, M.S. and Gharib, K.A. (2020), "Effect of geometrical properties on the strength of externally prestressed steel-concrete composite beams", Proc. Inst. Civil Eng.-Struct. Build., 173(1), 42-62. https://doi.org/10.1680/jstbu.17.00172.
- ACI Committee 209 (2008), Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- Augeard, E., Ferrier, E. and Michel, L. (2020), "Mechanical behavior of timber-concrete composite members under cyclic loading and creep", Eng. Struct., 210(1), 1-14. https://doi.org/10.1016/j.engstruct.2020.110289.
- Baskar, K., Shanmugam, N.E. and Thevendran, V. (2002), "Finite element analysis of steel-concrete composite plate girder", J. Struct. Eng., 128(9), 1158-1168. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1158).
- Bazant, Z.P. and Bajewa, S. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures Model B3", Mater. Struct., 28(180), 357-365. https://doi.org/10.1007/bf02473152.
- Bazant, Z.P. and Panula, L. (1978), "Practical prediction of time dependent deformations of concrete, Part I", Mater. Struct., 11(5), 307-316. https://doi.org/10.1007/BF02473872.
- Bazant, Z.P. and Prasannan, S. (1989a), "Solidification theory for creep I: Formulation", J. Eng. Mech., 115(8), 1691-1703. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1691).
- Bazant, Z.P. and Prasannan, S. (1989b), "Solidification theory for creep II: Verification and application", J. Eng. Mech., 115(8), 1704-1725. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1704).
- Bazant, Z.P. and Wu, S.T. (1973), "Dirichlet series creep function for aging concrete", J. Eng. Mech. Div., 99(EM2), 367-387. https://doi.org/10.1061/JMCEA3.0001741.
- Bradford, M.A. and Gilbert, R.I. (1991), "Time-dependent behavior of simply-supported steel-concrete composite beams", Mag. Concrete Res., 43(157), 265-274. https://doi.org/10.1680/macr.1991.43.157.265.
- Chapman, J. and Balakrishnan, S. (1964), "Experiments on composite beams", T. Struct. Eng., 42(11), 369-383.
- Chong, K.T. (2004), "Numerical modelling of time-dependent cracking and deformation of reinforced concrete structures". PhD Thesis, The University of New South Wales, School of Civil & Engineering, Sydney, Australia.
- Comite Euro-International du Beton CEB (1993), CEB-FIP Model Code 1990, CEB Bulletin d'Information No 213/214, Committee European du Beton-Federation Internationale de la Precontrainte, Lausanne, Switzerland.
- Comite Euro-International du Beton CEB (1999), Structural Concrete-Textbook on Behavior, Design and Performance, Updated Knowledge of the CEB-FIP Model code 1990, fib bulletin 2, V. 2, Federation Internationale du Beton, Lausanne, Switzerland.
- Damjanic, F. and Owen, D.R.J. (1984), "Practical considerations for modeling of post-cracking behavior for finite element analysis of reinforced concrete structures", Proceedings of the International Conference on Computer-aided Analysis and Design of Concrete Structures, Swansea, U.K.
- Dias, M., Tamayo, J.L.P., Morsch, I.B. and Awruch, M.A. (2015), "Time dependent finite element analysis of steel-concrete composite beams considering partial interaction", Comput. Concrete, 15(4), 687-707. https://doi.org/10.12989/cac.2015.15.4.687.
- Fan, J., Nie, J., Li, Q. and Wang, H. (2010a), "Long-term behavior of composite beams under positive and negative bending. I: Experimental study", J. Struct. Eng., 136(7), 849-857. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000175.
- Fan, J., Nie, X., Li, Q. and Li, Q. (2010b), "Long-term behavior of composite beams under positive and negative bending. II: Analytical study", J. Struct. Eng., 136(7), 858-865. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000176.
- Federation International du Beton FIB (2012), FIB-2010 Model code 2010, bulletin 65, V. 1, Federation Internationale du Beton, Lausanne, Switzerland.
- Gardner, N.J. (2004), "Comparison of prediction provisions for drying shrinkage and creep of bormal strength concretes", Can. J. Civil Eng., 31(5), 767-775. https://doi.org/10.1139/l04-046.
- Gardner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal strength concrete", ACI Mat. J., 98(2), 159-167.
- Geng, Y., Wang, Y., Chen, J. and Zhao, M. (2020), "Time-dependent behavior of 100% recycled coarse aggregate concrete filled steel tubes subjected to high sustained load level", Eng. Struct., 210(1), 1-17. https://doi.org/10.1016/j.engstruct.2020.110353.
- Henriques, D., Goncalves, R. and Camotim D. (2019), "A viscoelastic GBT-based finite element for steel-concrete composite beams", Thin Wall. Struct., 145, 1-11. https://doi.org/10.1016/j.tws.2019.106440.
- Henriques, D., Goncalves, R., Sousa, C. and Camotim D. (2020), "GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects", Thin Wall. Struct., 150, 1-17. https://doi.org/10.1016/j.tws.2020.106706.
- Jofriet, J.C. and McNeice, G.M. (1971), "Finite element analysis of reinforced concrete slabs", J. Struct. Div., 97(3), 785-806. https://doi.org/10.1061/JSDEAG.0002845.
- Liang, Q., Uy, B., Bradford, M. and Ronagh, H. (2005), "Strength analysis of steel-concrete composite beams in combined bending and shear", J. Struct. Eng., 131(10), 1593-1600. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001432.
- Macorini, L, Fragiacomo, M., Amadio, C. and Izzuddin, B.A. (2006), "Long-term analysis of steel-concrete composite beams: FE modeling for effective width evaluation", Eng. Struct., 28(8), 1110-1121. https://doi.org/10.1016/j.engstruct.2005.12.002.
- Moreno, J.A., Tamayo, J.L., Morsch, I.B., Miranda, M.P. and Reginato, L.H. (2019), "Statistical bias indicators for the long-term displacement of steel-concrete composite beams", Comput. Concrete, 24(4), 379-397. https://doi.org/10.12989/cac.2019.24.4.379.
- Moscoso, A.M., Tamayo, J.L. and Morsch, I.B. (2017), "Numerical simulation of external pre-stressed steel-concrete composite beams", Comput. Concrete, 19(2), 191-201. https://doi.org/10.12989/cac.2017.19.2.191.
- Muller, H.S. and Hilsdorf (1990), Evaluation of the Time Dependent Behavior of Concrete, Bulletin d'Information No 199, Committee Euro-International du Beton (CEB), Lausanne, Switzerland.
- Nguyen, Q. and Hjiaj M. (2016), "Nonlinear time-dependent behavior of composite steel-concrete beams", ASCE J. Struct. Eng., 142(5), 04015175. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001432.
- Povoas, R. (1991), "Nonlinear models for the analysis and design of concrete structures including time dependent effects", Doctoral Thesis, University of Porto.
- Ramnavas, M.P., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2015), "Cracked span length beam element for service load analysis of steel-concrete composite bridges", Comput. Struct., 157, 201-208. https://doi.org/10.1016/j.compstruc.2015.05.024.
- Reginato, L.H., Tamayo, J.L.P. and Morsch, I.B. (2018), "Finite element study of effective width in steel-concrete composite beams under long-term service loads", Lat. Am. J. Solid. Struct., 15(8), 1-25. http://doi.org/10.1590/1679-78254599.
- Rex, O.C. and Easterling, W.S. (2000), "Behavior and modeling of reinforced composite slab in tension", J. Struct. Eng., 126(7), 764-771. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(764).
- Ross, A.D. (1958), "Creep of concrete under variable stress", J. Am. Concete Inst., 29(9), 739- 758.
- Sakr, M.A. and Sakla, S.S. (2008), "Long term deflection of cracked composite beams with nonlinear partial shear interaction: I-Finite element modeling", J. Constr. Steel Res., 64(12), 1446-1455. https://doi.org/10.1016/j.jcsr.2008.01.003.
- Tamayo, J.L.P., Franco, M.I., Morsch, I.B., Desir, J.M. and Wayar, A.M. (2019), "Some aspects of numerical modeling of steel-concrete composite beams with prestressed tendons", Lat. Am. J. Solid. Struct., 16(7), 1-19. http://dx.doi.org/10.1590/1679-78255599.
- Tamayo, J.L.P., Morsch, I.B. and Awruch, M.A. (2015), "Short-time numerical analysis of steel-concrete composite beams", J. Brazil Soc. Mech. Sci. Eng., 37(4), 1097-1109. https://doi.org/10.1007/s40430-014-0237-9.
- Varshney, L., Patel, K., Chaudhary, S. and Nagpal, A. (2019), "An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams", Struct. Eng. Mech., 70(6), 751-763. https://doi.org/10.12989/sem.2019.70.6.751.
- Xiang, T., Yang, C. and Zhao, G. (2015), "Stochastic creep and shrinkage effect of steel-concrete composite beam", Adv. Struct. Eng., 18(8), 1129-1140. https://doi.org/10.1260/1369-4332.18.8.1129.
- Xu, L., Nie, X. and Tao, M. (2018), "Rotational modeling for cracking behavior of RC slabs in composite beams subjected to a hogging moment", Constr. Build. Mater., 192, 357-365. https://doi.org/10.1016/j.conbuildmat.2018.10.163.
- Zhang, H., Geng, Y., Wang, Y. and Wang, Q. (2020), "Long-term behavior of continuous composite slabs made with 100% fine and coarse recycled aggregate", Eng. Struct., 212(1), 1-17. https://doi.org/10.1016/j.engstruct.2020.110464.