DOI QR코드

DOI QR Code

A Study on Stability evaluation in the freezing/thawing process of urine specimen analytes

소변 검체 분석물질의 냉/해동 과정 안정성 평가 연구

  • Kim, Min Kyung (Seegene Medical Foundation, Life & Environment Science center) ;
  • Kim, Sung Wook (Department of Healh and Safety Convergence Science, Korea University) ;
  • Hwang, You Seong (Seegene Medical Foundation, Life & Environment Science center) ;
  • Oh, Eunha (Seegene Medical Foundation, Life & Environment Science center)
  • 김민경 ((재)씨젠의료재단) ;
  • 김성욱 (고려대학교 대학원 보건안전융합과학과 임상검사과학전공) ;
  • 황유성 ((재)씨젠의료재단) ;
  • 오은하 ((재)씨젠의료재단)
  • Received : 2021.12.28
  • Accepted : 2022.02.22
  • Published : 2022.02.28

Abstract

The purpose of this study was to find a way to improve the stability and quality of urinalysis by checking the changes in the measurement values of representative clinical chemistry test items according to the repeated freezing and thawing before the urine test and the thawing process. All subjects were 10 healthy males, and the freeze and thaw stability test was performed using their urine samples. In the case of micro-albumin and amylase, there was no statistical significance at 37℃ with time, but at 42℃ and 60℃, there was a statistically significant change in the results with time. There were statistically significant changes in BUN, creatinine, uric acid, and glucose. As a result of long-term stability, after 7 days, glucose mutation increased and amylase decreased at 60℃. In the case of glucose and amylase, there was a statistically significant change in the results over time. To obtain accurate test results, accurate standardization of urinalysis including appropriate collection, storage, and storage methods of urine samples is required and systematic study of conditions for securing stability for each biomaterial is required.

소변검사 전 냉/해동 반복과 해동 과정에 따라 대표적인 임상 화학검사 측정값의 변화를 확인함으로써 소변검사의 안정성과 품질 개선방안을 모색하고자 하였다. 조사 대상자는 모두 건강한 남성 10명이었으며 이들의 소변 검체를 이용하여 냉/해동 안정성(freeze and thaw stability) 실험을 진행하였다. Micro-albumin과 Amylase의 경우 시간이 경과 됨에 따라 37℃에서는 통계적 유의성은 없었으나, 42℃와 60℃에서는 시간의 경과에 따른 결과가 통계적으로 유의한 변동이 있었고, BUN, Creatinine, Uric acid와 Glucose에서는 통계적으로 유의한 변동이 있었다. Long term의 안정성 결과, 7일이 지난 후에는 Glucose의 변이는 증가하였고, 60℃에서는 Amylase가 감소하는 양상을 보였다. Glucose와 Amylase의 경우 시간의 경과에 따른 결과가 통계적으로 유의한 변동이 있었다. 신뢰성 있는 검사결과를 얻기 위해서는 소변 시료의 채취, 보관 및 저장 등을 비롯한 요검사의 정확한 표준화가 필요하며 생체 물질별 안정성 확보를 위한 조건들의 체계적 연구가 필요하다.

Keywords

References

  1. R. Albertini, M. Bird, N. Doerrer, H, Zenick, "The use of biomonitoring data in exposure and human health risk assessments", Envron. Health Perspect., vol. 114, no. 11, pp. 1755-1762 (2006). https://doi.org/10.1289/ehp.9056
  2. C. Jackson, N. Best, P. Elliott, UK biobank pilot study, "Stability of haematological and clinical chemistry analytes.", International Journal of Epidemiology. vol. 37, pp. i16-i22, (2008). https://doi.org/10.1093/ije/dym280
  3. L. Coppola, A. Cianfone, AM. Grimaldi, M. Incoronato, "Biobanking in health care: evolution and future directions", Journal Transl. Med., (2019) vol. 17, no. 172, pp. 1-18, (2019).
  4. M. Ercan, ED. Akbulut, A. Sedat Abusoglu, "Stability of urine specimens stored with and without preservatives at room temperature and on ice prior to urinalysis", Clin. Biochem., vol. 48, no. (13-14), pp. 9-22, (2015).
  5. M. Rotter, S. Brandmaier, C. Prehn, J. Adam, S. Rabstein, "Stability of targeted metabolite profiles of urine samples under different storage conditions", Metabolomics, vol. 13, no 4, pp. 1-9, (2017). https://doi.org/10.1007/s11306-016-1140-4
  6. J. Delanghe, M. Speeckaert, "Preanalytical requirements of urinalysis", Biochemia Medica, vol. 24, no. 1, pp. 89-104, (2014).
  7. S. Mikhail, G. Enric, "Influence of time, storage temperature and freeze/thaw cycles on the activity of digestive enzymes from gilthead sea bream (Sparus aurata)", Fish Physiol Biochem., vol. 42, no. 5, pp. 1383-1394,(2016). https://doi.org/10.1007/s10695-016-0226-2
  8. RC. Pommerich, U. Karmann-Schulz, R. Conrad, B. Stoffel-Wagner, B. Zur, "Evaluation of the appropriate time period between sampling and analyzing for automated urinalysis", Biochemia Medica., vol. 26, no. 1, pp. 82-89, (2016).
  9. M. Rotter, S. Brandmaier, C. Prehn, J. Adam, "Stability of targeted metabolite profiles of urine samples under different storage conditions", Metabolomics, vol. 13, no. 4, pp. 1776-1785, (2017).
  10. S. Cuhadar, M. Koseoglu, A. Atay, A. Dirican, "The effect of storage time and freeze-thaw cycles on the stability of serum samples", Biochemia Medica, vol. 23, no. 1, pp. 70-77, (2013).
  11. B. Surendra, D. Anthony, "Key Elements of Bioanalytical Method Validation for Small Molecules", AAPS Journal, vol. 9, no. 1, pp. 109-114, (2007).
  12. AS. Christophersen, J. Morland, "A pharmacokinetic study of ethyl glucuronide in blood and urine: applications to forensic toxicology", Forensic Sci. Int., vol. 172, no (2-3) pp. 119-124, (2007). https://doi.org/10.1016/j.forsciint.2007.01.005
  13. W Herrington, N. Illingworth, N. Staplin, A. Kumar, B. Storey, "Effect of Processing Delay and Storage Conditions on Urine Albumin-to-Creatinine Ratio", Clinical Journal of the American Society of Nephrology, Vol. 11, no. 10, pp. 1794-1801, (2016). https://doi.org/10.2215/cjn.13341215
  14. R. Shah, WR. Lacourse, "An improved method to detect ethyl glucuronide in urine using reversed-phase liquid chromatography and pulsed electrochemical detection", Anal. Chim. Acta, vol. 576, no. 2, pp. 239-245, (2006). https://doi.org/10.1016/j.aca.2006.06.017
  15. Y. Zheng, A. Helander, "Solid-phase extraction procedure for ethyl glucuronide in urine", Journal Anal. Toxicol., vol. 32, no. 9, pp. 778-781, (2008). https://doi.org/10.1093/jat/32.9.778