
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, Feb. 2022                                         565 
Copyright ⓒ 2022 KSII 

 
The work was sponsored by the Natural Science Foundation of Shanghai (Nos. 19ZR1402000 and 17ZR1400200), 
Shanghai Education and Scientific Research Project (C160076), the National Natural Science Foundation of China 
(Nos. 61772018 and 61772128 ), and the Seed Funds of the Key Laboratory of Ecology and Energy-saving Study of 
Dense Habitat of Ministry of Education (Tongji University) 
 
http://doi.org/10.3837/tiis.2022.02.011                                                                                                                ISSN : 1976-7277 

Verification Control Algorithm of Data 
Integrity Verification in Remote Data 

sharing 
 

Guangwei Xu1, Shan Li1, Miaolin Lai1, Yanglan Gan1*, Xiangyang Feng1,  
Qiubo Huang1, Li Li2 and Wei Li1 

1School of Computer Science and Technology, Donghua University 
Shanghai, 201620, China 

[e-mail: gwxu@dhu.edu.cn, ylgan@dhu.edu.cn] 
2College of Architecture and Urban Planning, Tongji University 

Shanghai, 200092, China 
*Corresponding author: Yanglan Gan 

 
Received May 8, 2020; revised June 5, 2021; accepted January 4, 2022;  

published February 28, 2022 

 

Abstract 
 

Cloud storage's elastic expansibility not only provides flexible services for data owners to 
store their data remotely, but also reduces storage operation and management costs of their 
data sharing. The data outsourced remotely in the storage space of cloud service provider also 
brings data security concerns about data integrity. Data integrity verification has become an 
important technology for detecting the integrity of remote shared data. However, users without 
data access rights to verify the data integrity will cause unnecessary overhead to data owner 
and cloud service provider. Especially malicious users who constantly launch data integrity 
verification will greatly waste service resources. Since data owner is a consumer purchasing 
cloud services, he needs to bear both the cost of data storage and that of data verification. This 
paper proposes a verification control algorithm in data integrity verification for remotely 
outsourced data. It designs an attribute-based encryption verification control algorithm for 
multiple verifiers. Moreover, data owner and cloud service provider construct a common 
access structure together and generate a verification sentinel to verify the authority of verifiers 
according to the access structure. Finally, since cloud service provider cannot know the access 
structure and the sentry generation operation, it can only authenticate verifiers with satisfying 
access policy to verify the data integrity for the corresponding outsourced data. Theoretical 
analysis and experimental results show that the proposed algorithm achieves fine-grained 
access control to multiple verifiers for the data integrity verification. 
 
Keywords: Cloud Storage, Data Sharing, Data Integrity Verification, Multiple Verifiers, 
Verification Control 
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1. Introduction 

Although cloud computing is attractive as a cost-effective and high-performance model. 
However, the reliability of cloud infrastructure has aroused data owners' concern because  
cloud infrastructure often encounters security issues [1-2]. Cloud computing that is deployed 
by cloud service provider (CSP) is a technical black box for users, and is also convenient for 
users to use and manage. Unfortunately, the nature of the black box leads to the lack of 
transparency in the behavior of CSP and regulatory mechanisms for CSP, causing users to 
distrust cloud service provider [3]. To solve these problems, many solutions have been 
proposed to verify the integrity of remotely stored data [4-17]. In a data sharing environment, 
when users download data resources over the Internet, they are very concerned about whether 
the data resources have been tampered with or damaged. Therefore, data integrity needs to be 
verified to ensure the availability of the data before data downloading [6]. However, the cloud 
storage service provided by CSP is not free, and the data owner as a consumer needs to pay 
money to CSP for resource consumption. Therefore, CSP's resource consumption caused by 
the data integrity verification will be borne by the data owner. The resource consumption 
includes transmission and computation overhead of CSP performing remote data integrity 
verification in the process of users downloading data. From the previous analysis, it can be 
seen that if CSP allows users without data access rights to verify the data integrity, some 
unnecessary expenses will be brought to the data owner. Moreover, CSP allows users without 
data access rights to launch the data integrity verification, making CSP vulnerable to resource 
exhaustion attacks [18]. According to the existing verification process, after receiving the 
verification requests from any verifier, CSP consumes its computation resources to generate 
the verification proof for the corresponding verified data. In this case, it is unreasonable for the 
data owner to pay for all the verification. This attack has been introduced as economic denial 
of sustainability (EDOS) [19-21], which will mean that the finance of the data owner is under 
attack. Although the user cannot recover the entire block from the verification proof generated 
by CSP during the verification process, the proof generation consumes CSP's computation 
resources and causes additional overhead for the data owner. 

At present, many attribute-based access control algorithms have been proposed. However, 
in the process of data integrity verification, only the data owner sets the access policy, and then 
CSP performs access control on the verifiers according to data owner's access policy, leading 
to some new problems: (a) The data owner and the verifier are likely to conspire to falsify the 
verification result, making the data integrity verification result unreliable; (b) When a verifier 
needs to apply for an attribute key, he cannot get the attribute key in time and is necessary to 
wait for the data owner to distribute the key since the data owner is not always online; (c) Data 
owner's resources and computation power is limited. When multiple users apply for the 
attribute key from the data owner, it may cause a serious burden to the data owner. Thus, we 
propose a verification control algorithm of multiple verifiers (MV-VCP) to resolve these 
problems in this paper. The main work of this article is as follows: 

1) In order to reduce the waste of verification overhead caused by multiple verifiers who do 
not have access permission to launch the data integrity verification, this paper designs an 
attribute-based encryption verification control algorithm for multiple verifiers. 

2) In the algorithm, data owner and CSP construct an access structure together, and generate 
a verification sentinel that checks the authority of verifiers according to the access structure. 
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3) Since the access structure is co-generated by data owner and CSP, CSP cannot know the 
attributes of the access structure constructed by the data owner, and the data owner outsources 
the sentry generation operation to CSP. 

4) CSP authenticates verifiers, and only the verifiers who meet the access policy can launch 
the data integrity verification to the corresponding data stored on CSP. 

2. Related Work 

2.1 Data integrity verification 
With the continuous popularity of cloud storage, remote data integrity verification has 
received more and more attention, since Atenese et al. [7] and Shacham et al. [8] proposed 
proofable data possession (PDP) and proofs of retrievability (POR) respectively. 
The main achievements  of this field are as follows. 

(1) Public verification scheme. Shacham and Waters [8] proposed the compact proof of 
data availability generated by a publicly verifiable homomorphic scheme based on the BLS 
signature [9]. Zhang et al. [22] developed a public verification scheme for cloud storage and 
proposed to use indistinguishable obfuscation algorithms to process data. 

(2) Identity-based integrity verification. Yu et al. [5] proposed identity-based integrity 
verification, using key-homomorphic cryptographic primitives to reduce the complexity of the 
system and the establishment and management cost of PKI-based public key authentication 
framework RDIC meter. Yang et al. [10] proposed a public audit protocol for sharing cloud 
data, supporting identity privacy and identity traceability. Tao et al. [14] designed a data 
integrity verification scheme to prevent collusion between CSP and revoked group users when 
sharing data. Li et al. [3] proposed fuzzy identity-based data integrity verification for cloud 
storage systems, and introduced complex identity-based audits to solve complex key 
management. 

2.2 Access control 
The access control algorithm is mainly used to conform to the relevant conventions and the 
scope of authorized users' access to information resources, and also to ensure that resources 
are not accessed by illegal users. Due to the large number of users in cloud computing and the 
complex relationship between roles and permissions, it is more suitable to use attribute-based 
access control to implement fine-grained access control [23-26]. Attribute-based access 
control can provide anonymous authentication, and further defines access control strategies 
based on different attributes of the requester, environment, and data object. Attribute-based 
encryption schemes [27-29] can meet these requirements. Next, the development of 
attribute-based encryption and attribute-based access control are explained separately. 

(1) Attribute-based encryption scheme 
In order to support data owners to perform fine-grained data access control in 

semi-transparent public cloud storage, attribute-based encryption (ABE) is introduced [28-29]. 
At present, many encryption schemes based on attribute encryption have been proposed, 
mainly divided into key policy attribute-based encryption (KP-ABE) [28] and ciphertext 
policy attribute-based encryption (CP-ABE) [23,29]. Among them, CP-ABE is very practical 
in public cloud storage [23,29], only users who match the access strategy can decrypt the 
related ciphertext, which increases the flexibility of the data access control mechanism. Li et al. 
[24] proposed an attribute-based ICN naming access control scheme, which implements 
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flexible attribute authorization by setting attribute rankings to achieve comparison between 
attributes. 

(2) Attribute-based access control 
Joseph et al. [26] proposed an attribute-based method to identify malicious clients. They 

deal with basic applications in black boxes and have not completely eliminated attacks at the 
algorithm and protocol level. To solve this problem, Xue et al. [18] proposed a combination of 
cloud-side access control and existing data-owner-based CP-ABE access control to ensure that 
only users who comply with data owner’s access strategy can download the corresponding 
data on CSP. CSP is only responsible for judging whether a user complies with the access 
strategy, ensuring user's privacy, and preventing user from launching an EDOS attack on the 
data owner [20-21]. 

In the existing access control scheme, the data owner encrypts the data using CP-ABE 
algorithm, and also achieves fine-grained access control. But even if the data owner encrypts 
the data uploaded to CSP according to the existing scheme, users who do not meet the 
conditions can still download the data and can launch the data integrity verification. 
Unauthorized downloads can also reduce security by facilitating offline analysis and leaking 
information such as data length or update frequency. At the same time, the computation 
overhead caused by the proof generation in the data integrity verification is relatively large. If 
the verifier is not constrained before the verification, the malicious verifiers will continue to 
launch the verification on the CSP. This will increase the data owner's consumption 
significantly. Therefore, it is extremely important to control the verification. 

3. System Model and Problem Statements 

3.1 Data integrity verification model 
In the data storage service model, it generally contains the data owner (DO), cloud service 
provider (CSP) and user (User) which can also be called the third party verifier (TPA) as 
shown in Fig. 1. When the user needs to use the data of the data owner, he downloads the 
corresponding data from CSP. At this time, if the data is corrupted, it will cause great trouble 
to the user. Therefore, users are very concerned about the integrity of data on CSP. The 
traditional verification model uses the third-party verification scheme [7] to ensure the fairness 
of the data verification. However, in reality, there is no real third party verifier to help the data 
owner verify the integrity of data. Thus, the user who needs to download the data on CSP will 
become the verifier. Moreover, the resources on CSP are not free to use and CSP needs to 
perform corresponding calculations while users verify the data integrity. The data owner is 
also a consumer who purchases CSP's services. Therefore, the cost of the data integrity 
verification will be borne by the data owner accordingly. Then the data owner will be very 
concerned about the number of verification costs caused by CSP calculating the data proof. 
Data integrity verification mainly consists of the following five steps: 

(1) 𝐾𝑒𝑦𝐺𝑒𝑛(𝜆) → (𝑠𝑘,𝑝𝑘). The algorithm is executed by the data owner. The data owner 
enters a security parameter 𝜆, and then outputs a private key 𝑠𝑘 and a public key 𝑝𝑘. 

(2) 𝑇𝑎𝑔𝐺𝑒𝑛(𝐹, 𝑠𝑘) → 𝛷.The tag generation algorithm is executed by the data owner before 
uploading the data. Take the encrypted data 𝐹 and the private key 𝑠𝑘 as input. The data owner 
firstly divides the data into 𝑛 blocks, and then calculates the tags 𝜎𝑖, 𝑖 ∈ [1, 𝑛] for each block. 
The data owner merges these tags into the tag set 𝛷 = {𝜎𝑖}𝑖∈[1,𝑛]. The data owner sends the tag 
set 𝛷 and data F to the CSP. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022                               569 

 
Fig. 1. Data integrity verification model 

 
 (3) 𝐶ℎ𝑎𝑙𝑙(𝐹) → 𝐶. The data owner randomly selects the index numbers of some data 

blocks to be verified, and sends a verification request to TPA. Based on this, TPA generates a 
corresponding random number for each data block in the information of the extracted data 
blocks 𝐵, and then forms a challenge set 𝐶 = �(𝑖, 𝑣𝑖)𝑖∈Q� to challenge the CSP, where 𝑣𝑖 are 
random numbers.  

(4) 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝐹,𝛷,𝐶) → 𝑃. CSP responds to the challenge and calculates the verification 
proof 𝑃 using the information of the extracted data blocks 𝐵 stored in his storage space, the 
data tag 𝛷  corresponding to the extracted data blocks, and the challenge information 𝐶 
provided by TPA, and finally the proof 𝑃 is returned to TPA.  

(5) 𝑉𝑒𝑟𝑖𝑓𝑦𝐷𝑎𝑡𝑎(𝐶,𝑃,𝑝𝑘) → 0/1. TPA uses the received verification proof 𝑃, the public 
key 𝑝𝑘, the challenge information 𝐶, and the data tag 𝛷 to determine the integrity of the 
challenged data blocks and output whether these data blocks are intact or not (i.e., 0 or 1).  

3.2 Security Model 
The security model of this solution is defined as a selectivity-game between the attacker A and 
the challenger B. The model is specifically defined as follows: 

Init. The adversary 𝐴  chooses a challenge access structure (𝑀∗,𝜌∗) , where 𝑀∗  is an 
𝑙∗ × 𝑛∗ matrix, and 𝜌∗ maps each row of 𝑀∗ to an attribute. 

Setup. The challenger runs the Setup algorithm and gives the public parameters 𝑃𝐾 to the 
adversary 𝐴． 

Phase 1. The adversary 𝐴 issues query for secret keys SK, none of the queried private keys 
can satisfy the access policy T． 

Challenge. The adversary 𝐴  submits two equal length messages 𝜇0  and 𝜇1  to the 
challenger𝐵 . 𝐵  randomly chooses 𝑏 ∈ {0,1}  and encrypts 𝜇1  under the challenge access 
structure (𝑀∗,𝜌∗). Finally, it sends the generated challenge ciphertext 𝐶𝑇∗ to the adversary.  

Phase 2. Phase 2 is the same as Phase 1. 
Guess. The adversary outputs the guess 𝑏 of 𝑏′. The advantage of A in this game is defined 

as 𝐴𝑑𝑣𝐴 = �𝑃𝑟(𝑏′ = 𝑏)− 1
2
�. 
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3.3 Problem Statement 
(1) Users who do not have data verification rights challenge the data integrity on CSP, 

causing a waste of verification overhead; 
(2) The data owner and the verifier are likely to conspire to falsify the verification results, 

making the verification results unreliable; 
(3) The data owner is not always online. When the verifier needs to apply for the attribute 

key, it cannot but wait for the data owner to go online for key distribution; 
(4) The data owner has only limited resources and computation power. When multiple 

users apply for the attribute key from the data owner, it may cause a serious burden to him. 

4. Verification control algorithm of multiple verifiers 

As can be seen from the foregoing, the proof generation requires to consume CSP’s resources 
and incurs corresponding costs for the data owner. Usually, only users with the right to access 
the data can verify the integrity of data. Users who do not have the right to access data from 
verifying the data integrity on CSP cause unnecessary overhead to the data owner, and even 
malicious users continuously launch the data verification on CSP so as to cause EDOS attacks 
on the data owner. Thus, the user should perform authentication control before the verification. 
A detailed description of the verification control algorithm for multiple verifiers is as follows.  

4.1 Construction of access structure 
The access structure is a specific manifestation of the access strategy. Data owner or CSP 
needs to use a specific access structure to formulate the access strategy. In the verification 
control algorithm, the access structure is used to authenticate the user. A user can be 
authorized to verify the data integrity on CSP if and only if his attribute set meets the access 
structure constructed by CSP and data owner.  

Referring to [30] for a (𝑡,𝑛) threshold gate access structure (𝑃1,𝑃2, . . . ,𝑃𝑛), we construct 
the LSSS matrix 𝑀∗ on 𝑍𝑝 as 

 

𝑀∗ =

⎝

⎜
⎛

1 1 1 ⋯ 1
1 2 22 ⋯ 2𝑡−1
1 3 32 ⋯ 3𝑡−1
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑛 𝑛2 ⋯ 𝑛𝑡−1⎠

⎟
⎞

.                                                 (1)  

 
In this paper, the access structure will be generated by data owner and CSP. The data 

owner formulates the corresponding access structure 𝐴 = (𝐴1,𝐴2, 2) for the data F, where 𝐴1 
is the access structure constructed by data owner, and 𝐴2 is the access structure constructed by 
CSP. The data owner constructs the LSSS access structure (𝑀,𝜌) of access structure A 
according to formula (1), where matrix M is 

 
𝑀 = �1 1

1 2�.                                                             (2) 
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The data owner sets the corresponding access structure 𝐴1 according to the characteristics 

of data F, and the attribute set 𝑆1 = {𝑥𝑥1, . . . , 𝑥𝑥𝑙1}. The attribute set 𝑆1 is a set of attributes 
included in the access policy 𝐴1. The data owner generates the LSSS access structure (𝑀1 ,𝜌) 
corresponding to 𝐴1 according to formulas (1) and (2), where the matrix 𝑀1 is 

 

𝑀1 = �
𝑎0,1 ⋯ 𝑎1,𝑛1
⋮ ⋱ ⋮

𝑎𝑙1,1 ⋯ 𝑎𝑙1,𝑛1

�.                                            (3) 

 
CSP formulates corresponding access structure 𝐴2, and attribute set 𝑆2 is a set of attributes 

contained in the access structure 𝐴2. CSP sets the attribute set 𝑆2 = {𝑦1, . . . ,𝑦𝑙2}, and the 
corresponding access structure 𝐴2 which is represented by a character string. CSP sends 𝐴2 
and 𝑆2 to data owner. CSP generates LSSS access structure (𝑀2,𝜌) according to 𝐴2, where 
𝑀2 is 

 

𝑀2 = �
𝑏1,1 ⋯ 𝑏1,𝑛2
⋮ ⋱ ⋮

𝑏𝑙2,1 ⋯ 𝑏𝑙2,𝑛2

� .                                            (4) 

 
After data owner and CSP complete the generation of 𝑀1 and 𝑀2 respectively, the data 

owner inserts the access structures (𝑀1,𝜌)  and (𝑀2,𝜌)  into (𝑀,𝜌)  to form the access 
structure 𝐴. Let 𝑙1 be the number of rows in the matrix 𝑀1, 𝑛1 be the number of columns in the 
matrix 𝑀1, 𝑙2 be the number of rows in the matrix 𝑀2, and 𝑛2 be the number of columns in the 
matrix 𝑀2. According to formula (2), the matrix M is calculated as 

 

                 𝑀 = �𝑣⃗1 ⊗ 𝑢�⃗ 1 𝑀�1 0
𝑣⃗2 ⊗ 𝑢�⃗ 1 0 𝑀�2

�   

=

⎝

⎜⎜
⎜
⎛

𝑎1,1 𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛1 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎𝑙1,1 𝑎𝑙1,1 𝑎𝑙1,2 ⋯ 𝑎𝑙1,𝑛1 0 ⋯ 0
𝑏1,1 2 ⋅ 𝑏1,1 0 ⋯ 0 𝑏1,2 ⋯ 𝑏1,𝑛2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑏𝑙2,1 2 ⋅ 𝑏𝑙2,1 0 ⋯ 0 𝑏𝑙2,2 ⋯ 𝑏𝑙2,𝑛2⎠

⎟⎟
⎟
⎞

.            (5) 

 
In formula (5), we can see that the data owner inserts the access structure (𝑀1,𝜌) and 

(𝑀2 ,𝜌) into (𝑀,𝜌), and the computational complexity of the generator matrix 𝑀 is 
 

𝐶𝑝 = 𝑛1𝑙1 + 𝑛2𝑙2 + 𝑙1 + 𝑙2.                                               (6) 
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The pseudo code of the construction of access structure is shown in Algorithm 1. 
 
Algorithm 1.  Access structure generation algorithm 
Input: 𝑀1 and 𝑀2; 
Output: 𝑀;  // The matrix M will be generated according to formula (5) 

1. 𝑛1 = column length of 𝑀1, 𝑙1 = row length of 𝑀1; 
2. 𝑛2 = column length of 𝑀2, 𝑙2 = row length of 𝑀2;    

// DO inserts the LSSS matrix 𝑀1 into matrix M. 
3. for 𝑖 = 0 to 𝑙1 − 1 do 
4.    for 𝑗 = 0 to 𝑛1 + 𝑛2 do 
5.       if (𝑗 = 0) then  𝑀[𝑖, 𝑗] = 𝑀1[𝑖, 0]; continue; 
6.       else if  (𝑗 > 0 and 𝑗 ≤ 𝑛1) 𝑀[𝑖, 𝑗] = 𝑀1[𝑖, 𝑗]; 
7.       else 𝑀[𝑖, 𝑗] = 0; end if 
8.     end for 
9. end for     // CSP inserts the LSSS matrix 𝑀2 into matrix M. 
10. for 𝑖: = 𝑙1 to 𝑙1 + 𝑙2 − 1 do 
11.     for 𝑗: = 0  to 𝑛1 + 𝑛2  do 
12.         if (𝑗 = 0) then 𝑀[𝑖, 𝑗] = 𝑀2[𝑖, 0]; continue; 
13.         else if  (𝑗 > 1 and 𝑗 ≤ 𝑛1 + 1) 𝑀[𝑖, 𝑗] = 0; 
14.         else if  (𝑗 = 1)  𝑀[𝑖, 𝑗] = 2 × 𝑀2[𝑖, 0]; 
15.         else 𝑀[𝑖, 𝑗] = 𝑀2[𝑖 − 𝑙1, 𝑗 − 𝑛1 − 1];  end if 
16.      end for 
17. end for 
18. return 𝑀; 

 
For example, assume that the access structure 𝐴1 = �(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 2), 𝑥𝑥4, 𝑥𝑥5, 3�  is 

formulated by the data owner, according to formulas (1) and (2), the LSSS matrix 𝑀1 
corresponding to the access structure 𝐴1 is 

 

𝑀1 =

⎝

⎜
⎛

1 1 1 1
1 1 1 2
1 1 1 3
1 2 4 0
1 3 9 0⎠

⎟
⎞

. 

 
Assuming that the access structure 𝐴2 = (𝑦1,𝑦2,𝑦3, 2) is formulated by CSP, according to 

formula (1), the LSSS matrix 𝑀2 corresponding to the access structure 𝐴2 is 
 

𝑀2 = �
1 1
1 2
1 3

�. 

 
The access strategies 𝐴1  and 𝐴2  constitute a common access structure 

𝐴 = ��(𝑥𝑥1,𝑥𝑥2 , 𝑥𝑥3, 2), 𝑥𝑥4, 𝑥𝑥5, 3�, (𝑦1,𝑦2,𝑦3, 2),2�. Therefore, according to formula (5), insert 
𝑀1  and 𝑀2  into 𝑀 to form the LSSS access structure (𝑀,𝜌) corresponding to the access 
structure A, the generation process is shown in Fig. 2. 
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Fig. 2. The generation of matrix M 

 
In Fig. 2, 𝐴1  is the access structure formulated by data owner, and 𝐴2  is the access 

structure formulated by CSP. The LSSS matrixes  𝑀1 and 𝑀2 corresponding to structure 𝐴1 
and 𝐴2 are generated respectively. Insert 𝑀1 and 𝑀2  into the matrix M to form the LSSS 
matrix M corresponding to the access structure A. Finally, the LSSS access structure (𝑀,𝜌) is 
used for subsequent verification control of the user. Only if the attribute set owned by the user 
satisfies A, the user can launch the data integrity verification on CSP.  

4.2 Attribute key generation and distribution 
In the process of verification control, since data owner is not always online, he needs to 
outsource his attribute key to CSP, and then CSP replaces the data owner to distribute the key. 
However, the key distributed by CSP instead of data owner will bring new problems. If data 
owner directly stores the attribute key on CSP, the CSP can use the corresponding attribute key 
to unlock the access strategy. Moreover, user sends his attribute set to CSP when applying for 
the attribute key. The distribution of the attribute key is the only part that leaks the identity 
information to each attribute authority. Therefore, user needs to hide his attributes when 
applying for the attribute key from the CSP.  

It can be seen from Section 4.1 that the access structure 𝐴 is constructed by data owner and 
CSP together, and CSP cannot know the attribute value in the access strategy constructed by 
data owner. Therefore, the attribute key corresponding to the attribute in the attribute set 𝑆1 is 
generated by data owner before uploading the data. However, sending the attribute key 
directly to CSP in plain text will bring new problems. CSP can use the corresponding attribute 
key to unlock the access policy. At the same time, the attribute values in the attribute set 𝑆1 are 
generally related to data content or the information of data owner. Publishing the attribute 
values directly to CSP may cause privacy leakage. Data owner generates an index of the 
attribute key during the generation of the attribute key, and then encrypts the attribute key 
before uploading it.  

𝑨𝒕𝒕𝑲𝒆𝒚𝑮𝒆𝒏𝑫𝑶(𝑆1): It is executed by data owner before uploading the data, with the 
attribute set 𝑆1  as input. Data owner selects a random number 𝑢1  for 𝑥𝑥 ∈ 𝑆1  to calculate 
𝐾𝑥 = ℎ𝑥

𝑢1 . To prevent CSP from obtaining 𝐾𝑥 , data owner will continue to calculate the 
outsourced attribute key 𝐾𝑥′ . For 𝑥𝑥 ∈ 𝑆1, calculate the outsourced key 𝐾𝑥′ = (𝐾𝑥)−𝑟, where 𝑟 

A1 = ((𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 2), 𝑥𝑥4, 𝑥𝑥5, 3) A2 = (y1, y2, y3, 2) 
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is a random number, and use the attribute value to encrypt the random number 𝑟 to generate 𝑟′ 
by the symmetric encryption algorithm AES, i.e., 𝑟′ = 𝐴𝐸𝑆.𝐸𝑛𝑐(𝑥𝑥, 𝑟). In order to enable user 
to find the corresponding attribute key on CSP through the attribute value, for all 𝑥𝑥 ∈ 𝑆1, data 
owner also calculates the index of the attribute key 𝑡𝑥 = 𝐻2(𝑒(𝐻1(𝑥𝑥),𝑔𝑠𝑘)). Data owner 
sends 𝑠𝑘1′ = {𝐾𝑥′ , 𝑡𝑥 , 𝑟′}𝑥∈S1 to CSP.  

When a user purchases or registers a service from CSP, he will execute 𝐴𝑡𝑡𝐺𝑒𝑛𝑢𝑠𝑒𝑟(𝑆′) to 
generate an attribute set 𝑆′, and then send it to CSP. In 𝐴𝑡𝑡𝐺𝑒𝑛𝑢𝑠𝑒𝑟(𝑆′), in order to protect 
user's privacy, user will hide some attributes.  

𝑨𝒕𝒕𝑮𝒆𝒏𝒖𝒔𝒆𝒓(𝑆′): It is executed by user and takes the attribute set 𝑆′ owned by user as 
input. Generally, it will be run when users register with CSP or purchase services. The user 
attribute set is 𝑆′ = 𝑆1′ ∪ 𝑆2′ , where 𝑆1′  and 𝑆2′  are related to 𝑆1 and 𝑆2 in the user attribute set 
respectively. Referring to the example in Section 4.1, when a user has a purchase behavior on 
CSP, then one of the user's attribute set is 𝑆 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥4, 𝑥𝑥5,𝑦1,𝑦2}. Since the privacy of the 
user is very important, the attributes in the access structure formulated by data owner generally 
include data information. When the user browses the data or registers in CSP, he does not 
expect CSP to know what data he has viewed. Therefore, it is necessary to hide the attributes in 
𝑆1′  in the user attribute set at the stage of user applying for the attribute key. For all 𝑥𝑥𝑖 ∈ 𝑆1′ , 
calculate 𝑦𝑖 = 𝐻1(𝑥𝑥𝑖)𝑢𝑘, 𝑝𝑘𝑢 = (𝑔𝑠𝑘)1/𝑢𝑘 . Finally, the user sends 𝑌 = {𝑦𝑖}, 𝑝𝑘𝑢  and 𝑆2′  to 
CSP to apply for the attribute key.  

After CSP receives 𝑌 = {𝑦𝑖}, 𝑝𝑘𝑢  and 𝑆2′ , it searches the corresponding attribute key 
according to the index 𝑡𝑥  and the attribute key 𝑌, and then generates the attribute key 𝑆𝐾2 
related to 𝑆2′  and returns SK to user.  

𝑨𝒕𝒕𝑲𝒆𝒚𝑮𝒆𝒏𝑪𝑺𝑷(𝑆2′): It is executed by CSP and takes the attribute set 𝑆2′  as input. CSP 
searches the corresponding attribute key according to the index of data owner {𝑡𝑥}𝑥∈𝑆1. If  

𝑡𝑥 = 𝐻2(e(𝑦𝑖 ,𝑝𝑘𝑢))                                                       (7) 
holds, CSP saves 𝐾𝑥′  and 𝑟𝑥′ to 𝑆𝐾1. 

CSP selects the random number 𝛽 and calculates the attribute key 𝑆𝐾2 of the attribute 
value in 𝑆2′  as 

𝑆𝐾2 = �𝐾 = 𝑔𝛼𝑠2𝑔𝑎𝑘 ,𝐿1 = 𝑔𝑎𝑘 , 𝐿2 = ℎ𝑎𝑘 ,∀𝑥𝑥𝑖 ∈ 𝑆2
′ :𝐾𝑥𝑖 = ℎ𝑥𝑖

𝛽 �.           (8) 
CSP sends 𝑆𝐾1 and 𝑆𝐾2 to the corresponding users. After CSP returns 𝑆𝐾1  and 𝑆𝐾2 , 

user outsources the attribute key 𝐾𝑥′ , and the corresponding attribute key 𝐾𝑥  can be obtained.  
𝑨𝒕𝒕𝑲𝒆𝒚𝑮𝒆𝒏𝑼𝒔𝒆𝒓(𝑆1, 𝑆𝐾2) : After receiving 𝑆𝐾1  and 𝑆𝐾2 , user decrypts 𝑟′  to obtain 

𝑟 = 𝐴𝐸𝑆.𝐷𝑒𝑐(𝑥𝑥, 𝑟′), and calculates the attribute key 𝐾𝑥 = (𝐾𝑥′)𝑟.  
The pseudo code of the attribute key generation and distribution is shown in Algorithm 2. 
Algorithm 2.  Attribute key generation algorithm 
Input:(M,𝜌), 𝑆1, 𝑆2, and 𝑆′; 
Output:𝑆𝐾1 , 𝑆𝐾2; 

1. 𝐴𝑡𝑡𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑂(𝑆1),  CSP←𝑆𝐾′1;   // Generating attribute key for data owner 
2. 𝐴𝑡𝑡𝐺𝑒𝑛𝑢𝑠𝑒𝑟(𝑆′), CSP←{Y,𝑝𝑘𝑢, 𝑆2′ }; // User requests the appropriate attribute key 
3. for 𝑥𝑥 in 𝑆2′do CSP computes 𝑆𝐾2; end for  // Generating attribute key 
4. for 𝑦𝑖 in 𝑌 do 
5.    for  𝑡𝑥  in  𝑆𝐾′1 do 
6.       if formula (7) holds then 𝑆𝐾1←𝐾𝑥′ , 𝑟𝑥′;  end if 
7.     end for 
8. end for 
9. return 𝑆𝐾1 , 𝑆𝐾2; 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022                               575 

4.3 Verification authority detection 
This paper combines data owner and CSP to jointly generate sentinels for verification control. 
The access structure (𝑀,𝜌) is constructed by data owner and CSP. Neither data owner nor 
CSP can know the attribute value of the part of the attribute constructed by the other party in 
the access structure. Thus, the verification sentry needs to be generated in two parts. 
Specifically, data owner generates the verification sentry 𝑆𝑇𝐷𝑂  of the access structure 
constructed by himself and the outsourcing key 𝑝𝑠,𝑖. CSP generates 𝐷𝑖 according to 𝑝𝑠,𝑖, and 
then merges 𝑆𝑇𝐷𝑂 and 𝐷𝑖 into the verification sentry 𝑆𝑇.  

𝑺𝒆𝒏𝒕𝒊𝒏𝒆𝒍𝑮𝒆𝒏𝑫𝑶(𝑀,𝜌): Data owner enters the access structure (𝑀,𝜌) to generate a part 
of the verification sentry 𝑆𝑇𝐷𝑂. He randomly selects the secret 𝑠 ∈ 𝑍𝑝 and generates a vector 
𝑣⃗ = (𝑠, 𝑧2, . . . , 𝑧𝑛) ∈ 𝑍𝑝, where 𝑧2, . . . , 𝑧𝑛  are used to share the secret 𝑠. For 𝑖 ∈ [1, 𝑙1], the 
data owner calculates 𝜆𝑖 = 𝑀𝑖 ⋅ 𝑣⃗, where 𝑀𝑖 is the ith row of the matrix M. He chooses the 
random number 𝑢2 ∈ 𝑍𝑝 and calculates 𝑆𝑇𝐷𝑂 as  

𝑆𝑇𝐷𝑂 = (𝐷 = 𝑝𝑓 ⋅ 𝑒(𝑔,𝑔)𝑎s,𝐷1′ = 𝑔𝑎𝑢2 , 𝑖 ∈ [1, 𝑙1]:𝐷𝑖 = 𝑔𝑎𝜆𝑖ℎ𝜌(𝑖)
𝑢2 )，       (9) 

where 𝑝𝑓 ∈ 𝑍𝑝, the function 𝜌 is an injective function, which maps each row in the matrix M 
to an attribute in the attribute set S, namely 𝜌(𝑖) ∈ 𝑆. 𝑆𝑇𝐷𝑂 is an intermediate verification 
sentinel generated by data owner, which is used for user's verification authority. Since 𝑠 is the 
key that can be finally controlled by verification, in order to protect data owner's privacy, data 
owner cannot send the secret 𝑠  as clear text to CSP. Thus, data owner calculates the 
outsourcing key 𝑝𝑠,𝑖 of the secret 𝑠 by 

𝑝𝑠,𝑖 = 𝑔𝑎(𝑠⋅𝑚𝑖,1−𝑚𝑖,1)，                                                     (10) 
where 𝑖 ∈ [𝑙1 + 1, 𝑙1 + 𝑙2] and 𝑚𝑖,1 is the ith row and first column in the matrix 𝑀. Then 
ℎ𝑎𝑠ℎ𝑝𝑓 = 𝐻(𝑝𝑓) is calculated, where 𝐻(∙) is an anti-collision hash function. Data owner 
outsources the key𝑃𝑠 = {𝑝𝑠,𝑖}𝜌(𝑖)∈𝑆2 , and the outsourcing vector 𝑣⃗ ′ = (1, 𝑧2, . . . , 𝑧𝑛) , the 
verification sentry 𝑆𝑇𝐷𝑂 and ℎ𝑎𝑠ℎ𝑝𝑓 are uploaded to CSP for storage.  

𝑺𝒆𝒏𝒕𝒊𝒏𝒆𝒍𝑮𝒆𝒏𝑪𝑺𝑷((𝑀,𝜌), 𝑣⃗′, 𝑆𝑇𝐷𝑂 ,𝑃𝑠) : CSP inputs access structure (𝑀,𝜌) , the 
outsourcing vector 𝑣⃗′, the outsourcing key 𝑃𝑠 generated by data owner, and the intermediate 

verification sentry 𝑆𝑇𝐷𝑂 . CSP calculates 𝜆𝑖
′ = 𝑀𝑖 ⋅ 𝑣⃗′ , where 𝑖 ∈ [𝑙1 + 1, 𝑙1 + 𝑙2] , 𝑀𝑖 

corresponds to the ith row in M. CSP chooses random 𝑘 ∈ 𝑍𝑝, and calculates 𝐷𝑖 by 

𝐷𝑖 = 𝑔𝑎𝜆𝑖
′

𝑝𝑠,𝑖ℎ𝜌(𝑖)
𝑘 = 𝑔𝑎𝜆𝑖ℎ𝜌(𝑖)

𝑘 ，                                       (11) 
 

where λi = 𝑀𝑖 ⋅ 𝑣⃗. CSP gets sentinel 𝑆𝑇𝐶𝑆𝑃 = (𝐷2′ = 𝑔𝑎𝑘 , 𝑖 ∈ [𝑙1 + 1, 𝑙1 + 𝑙2]:𝐷𝑖).  
Finally, the verification sentinel 𝑆𝑇 = 〈𝑆𝑇𝐷𝑂 , 𝑆𝑇𝐶𝑆𝑃〉 is output, and 𝑆𝑇 will then be used to 

detect the user verification authority.  
𝑨𝒖𝒕𝒉𝑷𝒓𝒐𝒐𝒇𝑮𝒆𝒏(𝑆𝐾1, 𝑆𝐾2 , 𝑆𝑇): The user generates 𝑝𝑓′ by this algorithm, and proves to 

CSP that he satisfies the access structure (𝑀,𝜌), and can verify the data integrity. Assume that 
user's attribute set 𝑆′ meets the access strategy constructed jointly by data owner and CSP. If 
𝜆𝑖 is the effectively shared share of secret 𝑠, the Lagrange interpolation formula can be used to 
find a set of coefficients in polynomial time {𝜔𝑖 ∈ 𝑍𝑝}𝑖∈𝐼 , so that ∑ 𝜔𝑖𝜆𝑖𝑖∈𝐼 = 𝑠 , where 
𝐼 = {𝑖: 𝜌(𝑖)  ∈ 𝑆′} ⊂ {1, . . . , 𝑙}. Then user calculates  

𝑇 = 𝑒(D1′ D2′ ,𝐾)
∏ �𝑒(𝐷𝑖,𝐿)𝑒(D1′D2′ ,𝐾𝜌(𝑖))�𝜔𝑖𝑖∈𝐼

= 𝑒(𝑔,𝑔)𝑎s .                         (12) 
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User calculates 𝑝𝑓′ = 𝐷/𝑇 and then sends 𝑝𝑓′ to CSP to prove that the set of attributes he 
possesses meets the access structure (𝑀,𝜌), so that he can verify the data integrity on CSP.  

𝑽𝒆𝒓𝒊𝒇𝒚(𝑝𝑓′,𝑔𝑢𝑘): After CSP receives 𝑝𝑓′, it verifies whether user has the authority to 
verify the data integrity on CSP. CSP verifies whether the attribute set owned by user satisfies 
the access structure (𝑀,𝜌) by 

ℎ𝑎𝑠ℎ𝑝𝑓 = 𝐻(𝑝𝑓′).                                              (13) 
If formula (13) holds, the attribute owned by user satisfies the access structure, and the 

verification can be performed; otherwise, CSP rejects user's verification request. 
The pseudo code of the process of verification authority detection is shown in Algorithm 3. 
 
Algorithm 3. Verification authority detection algorithm 
Input: 𝑆𝑇,𝐴; 
Output: 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒; 

1. for 𝑖: = 1 to 𝑙1 do  
2.     𝑆𝑇𝐷𝑂←formula (9); end for  // Generating 𝑆𝑇𝐷𝑂 for data owner. 
3. for 𝑖 = 𝑙1 + 1 to 𝑙2 do  
4.     𝑝𝑠,𝑖 ←formula (9); end for  // Outsourced key 𝑝𝑠,𝑖 
5. CSP←𝑃𝑠,𝑣⃗′, 𝑆𝑇𝐷𝑂, ℎ𝑎𝑠ℎ𝑝𝑓 ;  
6. for 𝑖 = 𝑙1 + 1 to 𝑙2 do 
7.     𝐷𝑖←formula (11); end for  // Checking sentinel ST 
8. CSP generates 𝑆𝑇;  // Detecting user's authority 
9. if user sends  𝑆 to CSP then CSP sends (𝑆𝑇,𝐴) to user; 
10.    User computes 𝑝𝑓′ and sends 𝑝𝑓′ to CSP; 
11.    if  formula (13) holds then return true; 
12.    else return false; 
13. end if 

5. Algorithm Analysis 
In this paper, the algorithm constructs the access structure by data owner and CSP to realize 
the verification control of users, so that users without data access rights cannot launch the data 
integrity verification for data owner. In order to illustrate the feasibility of the algorithm, the 
security analysis is conducted in this section, and the theoretical analysis of computational 
complexity and storage and transmission overhead is implemented in Section 6.1. 

The discrete logarithm calculation hypothesis (abbreviated as DL problem) supposes that  
a ∈ Zp∗ , p is a large prime number, and 𝑔1 is a generator of group 𝐺1, where 𝑔1𝑎 ∈ 𝐺1, 𝑔1 ∈ 𝐺1. 
Take 𝑔1𝑎 as input and output 𝑎. 

Definition 1. Discrete logarithm hypothesis (abbreviated as DL hypothesis). It exists 
𝜀 > 0. The advantage of any attacker in solving the DL problem on group 𝐺1 in a polynomial 
time algorithm 𝛩 is defined as follows 

𝐴𝑑𝑣𝐷𝐿𝛩 = Pr �𝛩(𝑔1 ,𝑔1𝑎) = 𝑎:𝑎
𝑅
← 𝑍𝑝� ≤ 𝜀. 

It can be seen from the above formula that the possibility of solving the DL problem is 
equivalent to using a random number a to perform a violent collision on Θ, with a probability 
of 1

𝑝
< 𝜀 . Let 𝑝 be a sufficiently large prime number. The advantage of solving the DL 

problem can be ignored, because the solving probability is close to zero. That is to say, it is 
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computationally difficult or impossible to solve the DL problem on the group 𝐺1 based on the 
establishment of the above hypothesis [28].  

Definition 2. Decision-making q-BDHE hypothesis. Assume that 𝐺 represents a bilinear 
group of order 𝑝, 𝑔 and ℎ are two independent generators of the group, select a random value 
𝛼 ∈ 𝑍𝑝 , and then define 𝑦𝑔,𝛼,𝑙 = (𝑔1 ,𝑔2, . . . ,𝑔𝑙 ,𝑔𝑙+2, . . . ,𝑔2𝑙) ∈ 𝐺2𝑙−1 , where 𝑔𝑖 = 𝑔(𝛼𝑖) . 
The algorithm makes a guess based on the output value 𝑧 ∈ {0,1} . If 
�Pr�B�𝑔,ℎ, 𝑦𝑔,𝛼,𝑙 , 𝑒(𝑔𝑙+1 ,ℎ)� = 0� − Pr�B�𝑔,ℎ,𝑦𝑔,𝛼,𝑙 ,𝑍� = 0�� ≥ 𝜀, then the advantage ε is 
defined to solve the decision-making problem under groups 𝐺 and 𝐺𝑇. If no polynomial time 
algorithm solves the decision-making problem with a non-negligible advantage, then the 
decision-making hypothesis holds in groups 𝐺 and 𝐺𝑇.   

5.1 Robustness of verification control 
Users whose attribute set does not satisfy the access structure cannot pass verification control. 
Suppose that the decision-making q-BDHE hypothesis holds. Without any polynomial time, 
the adversary can selectively destroy the algorithm by challenging the LSSS matrix. 

Init. Suppose adversary 𝐴  has a non-negligible advantage 𝜖 = 𝐴𝑑𝑣𝐴  to break this 
algorithm. Adversary 𝐴 chooses an access structure (𝑀∗,𝜌∗), where 𝑀∗ has 𝑙∗ rows and 𝑛∗ 
columns.  

Setup. The simulator chooses the random number 𝑎′ ∈ 𝑍𝑝, and 𝑎 = 𝑎′ + 𝑎𝑞+1, so that 
𝑒(𝑔,𝑔)𝛼 = 𝑒(𝑔𝑎 ,𝑔𝑎𝑞)𝑒(𝑔,𝑔)𝑎′ . For 1 ≤ 𝑥𝑥 ≤ 𝑆, choose a random number 𝑧𝑥 . Let X denote 
the index set 𝑖 , and 𝜌∗ = 𝑥𝑥 . The simulator calculates ℎ𝑥  by ℎ𝑥 = 𝑔𝑧𝑥 ∏ 𝑔𝑎𝑀𝑖,1

∗ /𝑏𝑖 ⋅𝑖∈𝑋
𝑔𝑎𝑀𝑖,1

∗ /𝑏𝑖 ⋯𝑔𝑎𝑀𝑖,1
∗ /𝑏𝑖. If 𝑋 = ∅, then ℎ𝑥 = 𝑔𝑧𝑥 . 

Phase 1. In this phase, adversary 𝐴 generates attribute set 𝑆. At the same time, adversary 𝐴 
sends 𝑆 to the simulator to obtain the private key, where S does not satisfy 𝑀∗. The simulator 
selects a random number 𝑟 ∈ 𝑍𝑝, and then selects a vector 𝜔 = (𝜔1, . . . ,𝜔𝑛∗) ∈ 𝑍𝑝, where 
𝜔1 = −1. According to the definition of the LSSS matrix, if the attribute set S does not satisfy 
the access structure (𝑀∗,𝜌∗), there must be 𝜔 ⋅ 𝑀𝑖

∗ = 0 for any 𝜌(𝑖) ∈ 𝑆. The simulator will 
define 𝑡 as 𝑡 = 𝑟 + 𝜔1𝑎𝑞 +𝜔2𝑎𝑞−1+. . . +𝜔𝑛∗𝑎𝑞−𝑛

∗+1. 
And let 𝐿 = 𝑔r ∏ (𝑔𝑎𝑞+1−𝑖)ω𝑖𝑖=1,...,𝑛∗ = 𝑔t . The simulator calculates K by 𝐾 =

𝑔𝛼′𝑔𝑎𝑟 ∏ (𝑔𝑎𝑞+2−𝑖)ω𝑖𝑖=2,...,𝑛∗ . 
For ∀𝑥𝑥 ∈ 𝑆, calculate 𝐾𝑥  by 

𝐾𝑥 = 𝑔(𝑣𝑥+𝛽𝑑𝑥)𝑡𝛽 ∙� � (𝑔
�𝑎

𝑗

𝑏𝑖
�𝑟𝛽2 � (𝑔𝑎𝑞+1+𝑗−𝑘/𝑏𝑖)𝜔𝑘𝛽2

𝑘=1,…,𝑛∗,𝑘≠𝑗

)𝑀𝑖,𝑗
∗

𝑗=1,…,𝑛∗𝑖∈𝑋

 

Challenge. The adversary generates two plaintexts 𝑚0 and 𝑚1, and then sends them to the 
simulator. The simulator randomly selects 𝑏 ∈ {0,1} , and then calculates 𝐶 = 𝑚𝑏𝑇 ∙
𝑒(𝑔𝑠 ,𝛼′),𝐶′ = 𝑔𝑠 . Applying the vector 𝑣⃗ = (𝑠, 𝑠𝑎 + 𝑦2′ , 𝑠𝑎2 + 𝑦3′ , … , 𝑠𝑎𝑛∗−1 + 𝑦𝑛∗

′) ∈
ℤ𝑝𝑛

∗, we have 

𝐶𝑖 = (𝑔𝑣𝜌∗(𝑖) ∙ 𝐻(𝜌∗(𝑖)))𝛾𝑟𝑖
′
∙ ( � 𝑔𝑎𝑀𝑖,𝑗𝑦𝑗

𝑗=1,…,𝑛∗
) ∙ �𝑔𝑏𝑖𝑠�

−𝛾�𝑣𝜌∗(𝑖)+𝑑𝜌∗(𝑖)�

∙ (� � (𝑔𝑎𝑗𝑠(𝑏𝑖/𝑏𝑘))𝛾𝑀𝑘,𝑗
∗

𝑗=1,…,𝑛∗𝑘∈𝑅𝑖

) 

Phase 2. Repeat phase 1. 
Guess. The adversary outputs a guess 𝑏′ to b. If 𝑏′ = 𝑏, the simulator outputs 0 to guess 
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𝑇 = 𝑒(𝑔,𝑔)𝑎𝑞+1𝑠; otherwise, it outputs 1,and T  is one random element of the group G.  
The advantage of calculating simulator B to get the correct guess result is 𝑃𝑟�𝐵�𝑦⃗,𝑇 =

𝑒(𝑔,𝑔)𝑎𝑞+1𝑠� = 0� = 1
2

+ 𝐴𝑑𝑣𝐴. 

5.2 Resisting EDOS attacks 
The security of many ABE schemes [28-29] and the schemes in this paper are based on the 
assumption that no probabilistic polynomial time algorithm can solve the q-DBDH problem 
and has a non-negligible advantage. This assumption is reasonable because the DL problem is 
widely considered to be tricky in the large number domain [11-12], and the selected group is a 
cyclic multiplicative group of prime order, where the q-DBDH problem is considered difficult. 
Therefore, a malicious user cannot challenge a download request to CSP through the malicious 
user, so that CSP continues to provide downloads, resulting in resource consumption and 
EDOS attacks. Therefore, in order to prevent this kind of attack, CSP sends a verification 
sentinel 𝑆𝑇  to verify whether a user has download permission before data downloading. 
However, the size of 𝑆𝑇 is much smaller than the size of data on the CSP. Moreover, the 
computation overhead of CSP executing the verification authority detection is much smaller 
than that of CSP generating the integrity proof. Therefore, an EDOS attack cannot be caused. 

5.3 Resisting collusion attacks 
Because the access structure is constructed together by data owner and CSP. If the malicious 
users collude with data owner, they only obtain the access structure 𝐴1 and generate the LSSS 
matrix 𝑀1  referring to formula (3). However, they cannot obtain the access structure  𝐴2 
provided by CSP so that they are impossible to generate the LSSS matrix 𝑀2 by formula (4). 
Therefore, the LSSS matrix 𝑀 cannot be calculated by formula (5), that is, the malicious users 
do not have the permission to verify the data integrity on CSP. In a similar manner, if the 
malicious users collude with CSP, they will not be able to be granted the verification 
authorization since the LSSS matrix 𝑀 cannot be calculated by formula (5).  

Moreover, even if the malicious users collude with each other, they cannot grant the 
verification authorization either. The reason is analyzed as follows. When a malicious user 
obtains 𝑆𝐾1 and 𝑆𝐾2 from CSP, he needs to decrypt the outsourced attribute key 𝐾𝑥′  to obtain 
the final attribute key 𝐾𝑥 . However, decrypting the outsourced attribute key, i.e., 𝐾𝑥′ (𝐾𝑥′ =
(𝐾𝑥)−𝑟), requires first to decrypt 𝑟′ to get 𝑟(𝑟 = AES. Dec�𝑥𝑥, 𝑟′�). But decrypting r′ requires 
the attribute x. Even if malicious users collude with each other to obtain each other's attributes, 
but it can be known in Section 5.1 that the adversary cannot selectively destroy the algorithm 
by challenging the LSSS matrix without any polynomial time referring to Definition 2. 

6. Performance Analysis 

6.1 Theoretical analysis 

6.1.1 Computational complexity 
Let the multiplication operation consumption in 𝐺  be 𝑀𝑢𝑙𝐺 , exponential operation 
consumption be 𝐸𝑥𝑥𝑝𝐺, and bilinear pairing operation (𝑒:𝐺 × 𝐺 → 𝐺𝑇) consumption be 𝑃𝑎𝑖𝑟. 
The complexity of the algorithm needs to be analyzed from three aspects: the computation 
overhead generated by data owner, the computation overhead generated by CSP, and the 
computation overhead generated by user.  
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(1) Computation overhead of data owner 
Data owner executes 𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙𝐺𝑒𝑛𝐷𝑂((𝑀,𝜌),𝑃𝐾)  to generate the verification sentry 

𝑆𝑇𝐷𝑂 and 𝐴𝑡𝑡𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑂(𝑆1) to generate the intermediate key before uploading the data F. 
Assuming that there are 𝑛1  attributes in the attribute set 𝑆1 , the calculation of 
𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙𝐺𝑒𝑛𝐷𝑂((𝑀,𝜌),𝑃𝐾)  consumes 𝐸𝑥𝑥𝑝𝐺 + 𝑙1(2𝑀𝑢𝑙𝐺 + 2𝐸𝑥𝑥𝑝𝐺) . The computation 
overhead of 𝐴𝑡𝑡𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑂(𝑆1) is 2𝑙1𝐸𝑥𝑥𝑝𝐺.  

(2) Computation overhead of CSP 
CSP calculates 𝐶𝑖 and generates the attribute key 𝑆𝐾2 of the attribute set 𝑆2. Suppose there 

are 𝑙2 attributes in the attribute set 𝑆2. The computation overhead of CSP calculating 𝐷𝑖 is 
𝑙2(2𝑀𝑢𝑙𝐺 + 2𝐸𝑥𝑥𝑝𝐺) . The computation overhead of generating the attribute key 𝑆𝐾2  is 
𝑀𝑢𝑙𝐺 + 4𝐸𝑥𝑥𝑝𝐺 + 𝑙2𝐸𝑥𝑥𝐺.  

(3) Computation overhead of user (or TPA) 
User's computation overhead is mainly generated by 𝐴𝑢𝑡ℎ𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝑆𝐾, 𝑆𝑇). At this 

stage, user generates 𝑝𝑓′ to prove that the set of attributes he possesses meets the access 
structure (𝑀,𝜌). Suppose there are n attributes in the attribute set owned by the user, and the 
computation overhead incurred by user at this stage is 𝑛𝐸𝑥𝑥𝐺 + (𝑛 + 1)𝑃𝑎𝑖𝑟.  

6.1.2 Storage and transmission overhead 
Assume that data owner manages 𝑛𝐷𝑂 attributes and CSP manages 𝑛𝐶𝑆𝑃  attributes. Let |𝑝| be 
the element size of G in  𝑍𝑝. The storage and transmission overhead of the algorithm is also 
analyzed from three aspects: storage and transmission overhead generated by data owner, 
storage and transmission overhead generated by CSP, and the storage and transmission 
overhead generated by user.  

(1) Storage and transmission overhead of data owner 
Since data owner needs to store all attribute keys, the storage overhead is 𝑛𝐷𝑂. At the same 

time, he needs to transmit the sentinel and the encrypted attribute key to CSP, which consumes 
the transmission overhead of 𝑛𝐷𝑂 + 1.  

(2) Storage and transmission overhead of CSP 
CSP needs to store and generate the attribute key and 𝐶𝑖 of the attribute set 𝑆2, and the 

storage overhead is 𝑛𝐷𝑂 + 2 ∙ 𝑛𝐶𝑆𝑃 . Assume that 𝑛 users apply for attribute keys from CSP, 
and each user applies for 𝑛𝑇𝑃𝐴 attribute keys, the transmission overhead of CSP is 𝑛 ∙ 𝑛𝑇𝑃𝐴 .  

(3) Storage and transmission overhead of user (or TPA) 
Let user have 𝑛𝑎𝑡𝑡 attributes. The storage overhead of user is 𝑛𝑎𝑡𝑡. The user needs to send 

𝑝𝑓′ to CSP, and 𝑛𝑎𝑡𝑡 attributes need to be sent to CSP to apply for the attribute key. Therefore, 
the transmission overhead of user is 𝑛𝑎𝑡𝑡 + 1.  

6.2 Simulation 
To further analyze the performance of the proposed algorithm, two laptops equipped with Intel 
core i5-4210M 2.60GHz CPU and a 8GB RAM  were used as data owner and user respectively. 
A service system with 4 core CPU and a 8GB RAM was rented from CentOS Alibaba cloud 
server to simulate CSP. The experimental code is based on PBC-0.5.14 (pairing-based 
cryptography library), modified and written with CPABE-0.11. The size of element 𝑔 in group 
G is 512 bits, and the length of elements in 𝑍𝑝is 160 bits. The access strategy in the form of 
(𝑆1 AND 𝑆2 AND . . . AND 𝑆𝑛) is used to simulate the most complex situation, where 𝑆𝑖 is an 
attribute. Each experiment was repeated 20 times in the same environment and the 
experimental results were averaged. The proposed algorithm in this paper is called MV-VCP. 
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In the experiment, the performance of MV-VCP, the algorithms partially outsourced protocol 
(POP) and fully outsourced protocol (FOP) [18], and CP-ABE [23] were compared.  

(1) The computation overhead of data owner at the preprocessing phase 
The preparation time refers to the calculation time of data owner before uploading the data 

to CSP. It is seen from Fig. 3 that the computation overhead and the number of attributes 
increase linearly. In Fig. 3, CP-ABE almost overlaps with POP and FOP since the running 
time of CP-ABE is only a few milliseconds longer than that of POP and FOP. The computation 
overhead of MV-VCP is higher than that of POP, FOP, and CP-ABE. However, in MV-VCP, 
data owner not only encrypts the data according to the access structure, but also generates an 
intermediate attribute key before uploading the data. Therefore, the calculation time of 
MV-VCP at this stage is greater than that of POP and FOP. Moreover, data owner generates 
the key during the preprocessing stage so that subsequent users will not apply to data owner 
when applying for the attribute key through the attribute. It is only performed once during the 
entire verification control process, so it will not cause a serious burden on data owner. 

 

 
Fig. 3. Data owner preprocessing time 

 
(2) Computation overhead at the key distribution phase 
Fig. 4(a) shows the computation overhead incurred by data owner at the key distribution 

phase. MV-VCP does not require user to apply for the attribute key from data owner, the 
computation overhead of which is zero. POP requires user to apply for the attribute key from 
data owner so that the key generation time is linearly related to the number of attributes as 
shown in Fig. 4(a) while only one user applies for the attribute key. FOP consumes a few 
milliseconds longer than POP and CP-ABE since data owner needs to generate a pair of 
signature keys for each file in FOP. If multiple users apply for the attribute key, a large amount 
of computation overhead will be consumed, making data owner vulnerable to resource 
consumption. Data owner can also generate attribute keys for all attributes in attribute set 𝑆1 in 
advance. When a user applies for an attribute key from the data owner, the data owner only 
needs to extract the corresponding attribute key from the previously generated attribute key 
and send it to the user. In this case, the computation overhead of data owner is also limited. 

However, keys distributed by data owner is actually unreasonable. Data owner is not likely 
to be online always. If a user applies for an attribute key and data owner is not online at that 
time, the user has to wait until data owner is online. Moreover, if the key is distributed by data 
owner, when user registers or purchases the service of CSP, CSP needs to forward the request 
to data owner or user needs to find data owner to apply for the attribute key according to CSP's 
guidelines. This process is extremely complicated. 
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The computation overhead of CSP distributing key is shown in Fig. 4(b). Since CP-ABE, 

POP and FOP will not be distributed by CSP, the computation overhead of POP, FOP and 
CP-ABE is zero. The overhead of 𝐴𝑡𝑡𝐾𝑒𝑦𝐺𝑒𝑛𝐶𝑆𝑃(. ) is still relatively large in Fig. 4(b). When 
a user applies for an attribute key, CSP calculates the attribute set 𝑆2 attribute key, incurring a 
large overhead. Therefore, the attribute key SK of the attribute set 𝑆2 can be generated by CSP 
in advance. When a user applies for the key, CSP only needs to search for a key in SK.  

 

 
(a)  by DO                                         (b) by CSP 

Fig. 4. Key distribution time 
 

 (3) Storage and transmission overhead 
The storage overhead of attribute keys in MV-VCP is slightly higher than that of POP and 

FOP, and the overhead of POP is equal to that of FOP as shown in Fig. 5. The overhead is 
linearly related to the number of attributes in access structure A. When the number of attributes 
is 8, even if the size of the attribute key is 2312KB, it does not burden CSP either since the 
storage resources on CSP are very sufficient. 

 

 
Fig. 5. Storage overhead of attribute keys 

 
The transmission overhead of MV-VCP and POP at the verification authority detection 

stage is shown in Fig. 6. The overhead of MV-VCP is slightly lower than that of POP and FOP. 
At this stage, CSP sends the verification sentinel ST to user to perform authorization detection, 
where the size of ST is linearly related to the number of attributes in the access structure A. 
However, POP sends not only the ciphertext CT, but also a challenge of detecting user rights. 
Moreover, the overhead of FOP is slightly higher than that of POP since FOP has to transmit 
one more ciphertext of the signature key.  
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Fig. 6. Transmission overhead of authority 

 
 (4) Verification authority detection 
Before a user challenges data integrity verification to CSP, his authority needs to be 

checked first. The experiment set up 10 users to challenge CSP, where each user only launched 
a challenge. When a user who does not meet the access structure A challenges the data on CSP, 
the computation overhead of CSP performing proof generation is shown in Fig. 7. It can be 
seen that verification control in MV-VCP will greatly reduce the computation overhead of 
CSP computing unnecessary verification proof relative to the traditional verification 
algorithm, e.g., DHT-PA [13]. 

 

 
Fig. 7. Proof generation time of unqualified users (or TPAs) 

 
Assume there are 50% of users in the experiment who do not have the authority to verify 

the data integrity. The experimental results are shown in Fig. 8. It can be seen that the effective 
verification of MV-VCP reaches 100%, while that of DHT-PA is 50%. This is mainly because 
MV-VCP filters users who have no authority to verify the data integrity on CSP. However, 
DHT-PA does not perform the authority check on users without the authority. 

In summary, MV-VCP can perform verification control on users, construct the access 
structure by CSP and data owner, and use the access structure to perform verification control 
on users. The users can challenge the integrity verification of the corresponding data on CSP if 
and only if the usrs meet the access structure. MV-VCP greatly reduces the computational 
burden of CSP by removing the unauthorized verification. 
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Fig. 8. Effective verification of users (or TPAs) 

7. Conclusion 

In the process of data integrity verification in cloud storage, users without data access 
authority perform integrity verification, adding unnecessary verification overhead to data 
owner. This paper proposes a verification control algorithm. The algorithm mainly includes 
two aspects. On the one hand, data owner and CSP jointly construct the access structure, which 
ensures the fairness of the integrity verification results. On the other hand, user hides CSP's 
attributes during the key distribution stage to ensure user’s privacy. The proposed algorithm 
can effectively intercept users without data access permissions, so that only users who meet 
the access policy can perform data integrity verification. In the future, we will research the 
verification control algorithm of multiple data owners. 
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