
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, Feb. 2022 565
Copyright ⓒ 2022 KSII

The work was sponsored by the Natural Science Foundation of Shanghai (Nos. 19ZR1402000 and 17ZR1400200),
Shanghai Education and Scientific Research Project (C160076), the National Natural Science Foundation of China
(Nos. 61772018 and 61772128), and the Seed Funds of the Key Laboratory of Ecology and Energy-saving Study of
Dense Habitat of Ministry of Education (Tongji University)

http://doi.org/10.3837/tiis.2022.02.011 ISSN : 1976-7277

Verification Control Algorithm of Data
Integrity Verification in Remote Data

sharing

Guangwei Xu1, Shan Li1, Miaolin Lai1, Yanglan Gan1*, Xiangyang Feng1,
Qiubo Huang1, Li Li2 and Wei Li1

1School of Computer Science and Technology, Donghua University
Shanghai, 201620, China

[e-mail: gwxu@dhu.edu.cn, ylgan@dhu.edu.cn]
2College of Architecture and Urban Planning, Tongji University

Shanghai, 200092, China
*Corresponding author: Yanglan Gan

Received May 8, 2020; revised June 5, 2021; accepted January 4, 2022;

published February 28, 2022

Abstract

Cloud storage's elastic expansibility not only provides flexible services for data owners to
store their data remotely, but also reduces storage operation and management costs of their
data sharing. The data outsourced remotely in the storage space of cloud service provider also
brings data security concerns about data integrity. Data integrity verification has become an
important technology for detecting the integrity of remote shared data. However, users without
data access rights to verify the data integrity will cause unnecessary overhead to data owner
and cloud service provider. Especially malicious users who constantly launch data integrity
verification will greatly waste service resources. Since data owner is a consumer purchasing
cloud services, he needs to bear both the cost of data storage and that of data verification. This
paper proposes a verification control algorithm in data integrity verification for remotely
outsourced data. It designs an attribute-based encryption verification control algorithm for
multiple verifiers. Moreover, data owner and cloud service provider construct a common
access structure together and generate a verification sentinel to verify the authority of verifiers
according to the access structure. Finally, since cloud service provider cannot know the access
structure and the sentry generation operation, it can only authenticate verifiers with satisfying
access policy to verify the data integrity for the corresponding outsourced data. Theoretical
analysis and experimental results show that the proposed algorithm achieves fine-grained
access control to multiple verifiers for the data integrity verification.

Keywords: Cloud Storage, Data Sharing, Data Integrity Verification, Multiple Verifiers,
Verification Control

566 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

1. Introduction

Although cloud computing is attractive as a cost-effective and high-performance model.
However, the reliability of cloud infrastructure has aroused data owners' concern because
cloud infrastructure often encounters security issues [1-2]. Cloud computing that is deployed
by cloud service provider (CSP) is a technical black box for users, and is also convenient for
users to use and manage. Unfortunately, the nature of the black box leads to the lack of
transparency in the behavior of CSP and regulatory mechanisms for CSP, causing users to
distrust cloud service provider [3]. To solve these problems, many solutions have been
proposed to verify the integrity of remotely stored data [4-17]. In a data sharing environment,
when users download data resources over the Internet, they are very concerned about whether
the data resources have been tampered with or damaged. Therefore, data integrity needs to be
verified to ensure the availability of the data before data downloading [6]. However, the cloud
storage service provided by CSP is not free, and the data owner as a consumer needs to pay
money to CSP for resource consumption. Therefore, CSP's resource consumption caused by
the data integrity verification will be borne by the data owner. The resource consumption
includes transmission and computation overhead of CSP performing remote data integrity
verification in the process of users downloading data. From the previous analysis, it can be
seen that if CSP allows users without data access rights to verify the data integrity, some
unnecessary expenses will be brought to the data owner. Moreover, CSP allows users without
data access rights to launch the data integrity verification, making CSP vulnerable to resource
exhaustion attacks [18]. According to the existing verification process, after receiving the
verification requests from any verifier, CSP consumes its computation resources to generate
the verification proof for the corresponding verified data. In this case, it is unreasonable for the
data owner to pay for all the verification. This attack has been introduced as economic denial
of sustainability (EDOS) [19-21], which will mean that the finance of the data owner is under
attack. Although the user cannot recover the entire block from the verification proof generated
by CSP during the verification process, the proof generation consumes CSP's computation
resources and causes additional overhead for the data owner.

At present, many attribute-based access control algorithms have been proposed. However,
in the process of data integrity verification, only the data owner sets the access policy, and then
CSP performs access control on the verifiers according to data owner's access policy, leading
to some new problems: (a) The data owner and the verifier are likely to conspire to falsify the
verification result, making the data integrity verification result unreliable; (b) When a verifier
needs to apply for an attribute key, he cannot get the attribute key in time and is necessary to
wait for the data owner to distribute the key since the data owner is not always online; (c) Data
owner's resources and computation power is limited. When multiple users apply for the
attribute key from the data owner, it may cause a serious burden to the data owner. Thus, we
propose a verification control algorithm of multiple verifiers (MV-VCP) to resolve these
problems in this paper. The main work of this article is as follows:

1) In order to reduce the waste of verification overhead caused by multiple verifiers who do
not have access permission to launch the data integrity verification, this paper designs an
attribute-based encryption verification control algorithm for multiple verifiers.

2) In the algorithm, data owner and CSP construct an access structure together, and generate
a verification sentinel that checks the authority of verifiers according to the access structure.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 567

3) Since the access structure is co-generated by data owner and CSP, CSP cannot know the
attributes of the access structure constructed by the data owner, and the data owner outsources
the sentry generation operation to CSP.

4) CSP authenticates verifiers, and only the verifiers who meet the access policy can launch
the data integrity verification to the corresponding data stored on CSP.

2. Related Work

2.1 Data integrity verification
With the continuous popularity of cloud storage, remote data integrity verification has
received more and more attention, since Atenese et al. [7] and Shacham et al. [8] proposed
proofable data possession (PDP) and proofs of retrievability (POR) respectively.
The main achievements of this field are as follows.

(1) Public verification scheme. Shacham and Waters [8] proposed the compact proof of
data availability generated by a publicly verifiable homomorphic scheme based on the BLS
signature [9]. Zhang et al. [22] developed a public verification scheme for cloud storage and
proposed to use indistinguishable obfuscation algorithms to process data.

(2) Identity-based integrity verification. Yu et al. [5] proposed identity-based integrity
verification, using key-homomorphic cryptographic primitives to reduce the complexity of the
system and the establishment and management cost of PKI-based public key authentication
framework RDIC meter. Yang et al. [10] proposed a public audit protocol for sharing cloud
data, supporting identity privacy and identity traceability. Tao et al. [14] designed a data
integrity verification scheme to prevent collusion between CSP and revoked group users when
sharing data. Li et al. [3] proposed fuzzy identity-based data integrity verification for cloud
storage systems, and introduced complex identity-based audits to solve complex key
management.

2.2 Access control
The access control algorithm is mainly used to conform to the relevant conventions and the
scope of authorized users' access to information resources, and also to ensure that resources
are not accessed by illegal users. Due to the large number of users in cloud computing and the
complex relationship between roles and permissions, it is more suitable to use attribute-based
access control to implement fine-grained access control [23-26]. Attribute-based access
control can provide anonymous authentication, and further defines access control strategies
based on different attributes of the requester, environment, and data object. Attribute-based
encryption schemes [27-29] can meet these requirements. Next, the development of
attribute-based encryption and attribute-based access control are explained separately.

(1) Attribute-based encryption scheme
In order to support data owners to perform fine-grained data access control in

semi-transparent public cloud storage, attribute-based encryption (ABE) is introduced [28-29].
At present, many encryption schemes based on attribute encryption have been proposed,
mainly divided into key policy attribute-based encryption (KP-ABE) [28] and ciphertext
policy attribute-based encryption (CP-ABE) [23,29]. Among them, CP-ABE is very practical
in public cloud storage [23,29], only users who match the access strategy can decrypt the
related ciphertext, which increases the flexibility of the data access control mechanism. Li et al.
[24] proposed an attribute-based ICN naming access control scheme, which implements

568 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

flexible attribute authorization by setting attribute rankings to achieve comparison between
attributes.

(2) Attribute-based access control
Joseph et al. [26] proposed an attribute-based method to identify malicious clients. They

deal with basic applications in black boxes and have not completely eliminated attacks at the
algorithm and protocol level. To solve this problem, Xue et al. [18] proposed a combination of
cloud-side access control and existing data-owner-based CP-ABE access control to ensure that
only users who comply with data owner’s access strategy can download the corresponding
data on CSP. CSP is only responsible for judging whether a user complies with the access
strategy, ensuring user's privacy, and preventing user from launching an EDOS attack on the
data owner [20-21].

In the existing access control scheme, the data owner encrypts the data using CP-ABE
algorithm, and also achieves fine-grained access control. But even if the data owner encrypts
the data uploaded to CSP according to the existing scheme, users who do not meet the
conditions can still download the data and can launch the data integrity verification.
Unauthorized downloads can also reduce security by facilitating offline analysis and leaking
information such as data length or update frequency. At the same time, the computation
overhead caused by the proof generation in the data integrity verification is relatively large. If
the verifier is not constrained before the verification, the malicious verifiers will continue to
launch the verification on the CSP. This will increase the data owner's consumption
significantly. Therefore, it is extremely important to control the verification.

3. System Model and Problem Statements

3.1 Data integrity verification model
In the data storage service model, it generally contains the data owner (DO), cloud service
provider (CSP) and user (User) which can also be called the third party verifier (TPA) as
shown in Fig. 1. When the user needs to use the data of the data owner, he downloads the
corresponding data from CSP. At this time, if the data is corrupted, it will cause great trouble
to the user. Therefore, users are very concerned about the integrity of data on CSP. The
traditional verification model uses the third-party verification scheme [7] to ensure the fairness
of the data verification. However, in reality, there is no real third party verifier to help the data
owner verify the integrity of data. Thus, the user who needs to download the data on CSP will
become the verifier. Moreover, the resources on CSP are not free to use and CSP needs to
perform corresponding calculations while users verify the data integrity. The data owner is
also a consumer who purchases CSP's services. Therefore, the cost of the data integrity
verification will be borne by the data owner accordingly. Then the data owner will be very
concerned about the number of verification costs caused by CSP calculating the data proof.
Data integrity verification mainly consists of the following five steps:

(1) 𝐾𝑒𝑦𝐺𝑒𝑛(𝜆) → (𝑠𝑘,𝑝𝑘). The algorithm is executed by the data owner. The data owner
enters a security parameter 𝜆, and then outputs a private key 𝑠𝑘 and a public key 𝑝𝑘.

(2) 𝑇𝑎𝑔𝐺𝑒𝑛(𝐹, 𝑠𝑘) → 𝛷.The tag generation algorithm is executed by the data owner before
uploading the data. Take the encrypted data 𝐹 and the private key 𝑠𝑘 as input. The data owner
firstly divides the data into 𝑛 blocks, and then calculates the tags 𝜎𝑖, 𝑖 ∈ [1, 𝑛] for each block.
The data owner merges these tags into the tag set 𝛷 = {𝜎𝑖}𝑖∈[1,𝑛]. The data owner sends the tag
set 𝛷 and data F to the CSP.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 569

Fig. 1. Data integrity verification model

 (3) 𝐶ℎ𝑎𝑙𝑙(𝐹) → 𝐶. The data owner randomly selects the index numbers of some data

blocks to be verified, and sends a verification request to TPA. Based on this, TPA generates a
corresponding random number for each data block in the information of the extracted data
blocks 𝐵, and then forms a challenge set 𝐶 = �(𝑖, 𝑣𝑖)𝑖∈Q� to challenge the CSP, where 𝑣𝑖 are
random numbers.

(4) 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝐹,𝛷,𝐶) → 𝑃. CSP responds to the challenge and calculates the verification
proof 𝑃 using the information of the extracted data blocks 𝐵 stored in his storage space, the
data tag 𝛷 corresponding to the extracted data blocks, and the challenge information 𝐶
provided by TPA, and finally the proof 𝑃 is returned to TPA.

(5) 𝑉𝑒𝑟𝑖𝑓𝑦𝐷𝑎𝑡𝑎(𝐶,𝑃,𝑝𝑘) → 0/1. TPA uses the received verification proof 𝑃, the public
key 𝑝𝑘, the challenge information 𝐶, and the data tag 𝛷 to determine the integrity of the
challenged data blocks and output whether these data blocks are intact or not (i.e., 0 or 1).

3.2 Security Model
The security model of this solution is defined as a selectivity-game between the attacker A and
the challenger B. The model is specifically defined as follows:

Init. The adversary 𝐴 chooses a challenge access structure (𝑀∗,𝜌∗) , where 𝑀∗ is an
𝑙∗ × 𝑛∗ matrix, and 𝜌∗ maps each row of 𝑀∗ to an attribute.

Setup. The challenger runs the Setup algorithm and gives the public parameters 𝑃𝐾 to the
adversary 𝐴．

Phase 1. The adversary 𝐴 issues query for secret keys SK, none of the queried private keys
can satisfy the access policy T．

Challenge. The adversary 𝐴 submits two equal length messages 𝜇0 and 𝜇1 to the
challenger𝐵 . 𝐵 randomly chooses 𝑏 ∈ {0,1} and encrypts 𝜇1 under the challenge access
structure (𝑀∗,𝜌∗). Finally, it sends the generated challenge ciphertext 𝐶𝑇∗ to the adversary.

Phase 2. Phase 2 is the same as Phase 1.
Guess. The adversary outputs the guess 𝑏 of 𝑏′. The advantage of A in this game is defined

as 𝐴𝑑𝑣𝐴 = �𝑃𝑟(𝑏′ = 𝑏)− 1
2
�.

User(TPA)

CSP

Data Owner

Challenge

Proof

Verification Requirement

Accecpt Verification
Requirement

4

5Upload File and
Data Tags

1

Pay for Verification
Cost

6

3

2

570 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

3.3 Problem Statement
(1) Users who do not have data verification rights challenge the data integrity on CSP,

causing a waste of verification overhead;
(2) The data owner and the verifier are likely to conspire to falsify the verification results,

making the verification results unreliable;
(3) The data owner is not always online. When the verifier needs to apply for the attribute

key, it cannot but wait for the data owner to go online for key distribution;
(4) The data owner has only limited resources and computation power. When multiple

users apply for the attribute key from the data owner, it may cause a serious burden to him.

4. Verification control algorithm of multiple verifiers

As can be seen from the foregoing, the proof generation requires to consume CSP’s resources
and incurs corresponding costs for the data owner. Usually, only users with the right to access
the data can verify the integrity of data. Users who do not have the right to access data from
verifying the data integrity on CSP cause unnecessary overhead to the data owner, and even
malicious users continuously launch the data verification on CSP so as to cause EDOS attacks
on the data owner. Thus, the user should perform authentication control before the verification.
A detailed description of the verification control algorithm for multiple verifiers is as follows.

4.1 Construction of access structure
The access structure is a specific manifestation of the access strategy. Data owner or CSP
needs to use a specific access structure to formulate the access strategy. In the verification
control algorithm, the access structure is used to authenticate the user. A user can be
authorized to verify the data integrity on CSP if and only if his attribute set meets the access
structure constructed by CSP and data owner.

Referring to [30] for a (𝑡,𝑛) threshold gate access structure (𝑃1,𝑃2, . . . ,𝑃𝑛), we construct
the LSSS matrix 𝑀∗ on 𝑍𝑝 as

𝑀∗ =

⎝

⎜
⎛

1 1 1 ⋯ 1
1 2 22 ⋯ 2𝑡−1
1 3 32 ⋯ 3𝑡−1
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑛 𝑛2 ⋯ 𝑛𝑡−1⎠

⎟
⎞

. (1)

In this paper, the access structure will be generated by data owner and CSP. The data

owner formulates the corresponding access structure 𝐴 = (𝐴1,𝐴2, 2) for the data F, where 𝐴1
is the access structure constructed by data owner, and 𝐴2 is the access structure constructed by
CSP. The data owner constructs the LSSS access structure (𝑀,𝜌) of access structure A
according to formula (1), where matrix M is

𝑀 = �1 1

1 2�. (2)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 571

The data owner sets the corresponding access structure 𝐴1 according to the characteristics

of data F, and the attribute set 𝑆1 = {𝑥𝑥1, . . . , 𝑥𝑥𝑙1}. The attribute set 𝑆1 is a set of attributes
included in the access policy 𝐴1. The data owner generates the LSSS access structure (𝑀1 ,𝜌)
corresponding to 𝐴1 according to formulas (1) and (2), where the matrix 𝑀1 is

𝑀1 = �
𝑎0,1 ⋯ 𝑎1,𝑛1
⋮ ⋱ ⋮

𝑎𝑙1,1 ⋯ 𝑎𝑙1,𝑛1

�. (3)

CSP formulates corresponding access structure 𝐴2, and attribute set 𝑆2 is a set of attributes

contained in the access structure 𝐴2. CSP sets the attribute set 𝑆2 = {𝑦1, . . . ,𝑦𝑙2}, and the
corresponding access structure 𝐴2 which is represented by a character string. CSP sends 𝐴2
and 𝑆2 to data owner. CSP generates LSSS access structure (𝑀2,𝜌) according to 𝐴2, where
𝑀2 is

𝑀2 = �
𝑏1,1 ⋯ 𝑏1,𝑛2
⋮ ⋱ ⋮

𝑏𝑙2,1 ⋯ 𝑏𝑙2,𝑛2

� . (4)

After data owner and CSP complete the generation of 𝑀1 and 𝑀2 respectively, the data

owner inserts the access structures (𝑀1,𝜌) and (𝑀2,𝜌) into (𝑀,𝜌) to form the access
structure 𝐴. Let 𝑙1 be the number of rows in the matrix 𝑀1, 𝑛1 be the number of columns in the
matrix 𝑀1, 𝑙2 be the number of rows in the matrix 𝑀2, and 𝑛2 be the number of columns in the
matrix 𝑀2. According to formula (2), the matrix M is calculated as

 𝑀 = �𝑣⃗1 ⊗ 𝑢�⃗ 1 𝑀�1 0
𝑣⃗2 ⊗ 𝑢�⃗ 1 0 𝑀�2

�

=

⎝

⎜⎜
⎜
⎛

𝑎1,1 𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛1 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎𝑙1,1 𝑎𝑙1,1 𝑎𝑙1,2 ⋯ 𝑎𝑙1,𝑛1 0 ⋯ 0
𝑏1,1 2 ⋅ 𝑏1,1 0 ⋯ 0 𝑏1,2 ⋯ 𝑏1,𝑛2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑏𝑙2,1 2 ⋅ 𝑏𝑙2,1 0 ⋯ 0 𝑏𝑙2,2 ⋯ 𝑏𝑙2,𝑛2⎠

⎟⎟
⎟
⎞

. (5)

In formula (5), we can see that the data owner inserts the access structure (𝑀1,𝜌) and

(𝑀2 ,𝜌) into (𝑀,𝜌), and the computational complexity of the generator matrix 𝑀 is

𝐶𝑝 = 𝑛1𝑙1 + 𝑛2𝑙2 + 𝑙1 + 𝑙2. (6)

572 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

The pseudo code of the construction of access structure is shown in Algorithm 1.

Algorithm 1. Access structure generation algorithm
Input: 𝑀1 and 𝑀2;
Output: 𝑀; // The matrix M will be generated according to formula (5)

1. 𝑛1 = column length of 𝑀1, 𝑙1 = row length of 𝑀1;
2. 𝑛2 = column length of 𝑀2, 𝑙2 = row length of 𝑀2;

// DO inserts the LSSS matrix 𝑀1 into matrix M.
3. for 𝑖 = 0 to 𝑙1 − 1 do
4. for 𝑗 = 0 to 𝑛1 + 𝑛2 do
5. if (𝑗 = 0) then 𝑀[𝑖, 𝑗] = 𝑀1[𝑖, 0]; continue;
6. else if (𝑗 > 0 and 𝑗 ≤ 𝑛1) 𝑀[𝑖, 𝑗] = 𝑀1[𝑖, 𝑗];
7. else 𝑀[𝑖, 𝑗] = 0; end if
8. end for
9. end for // CSP inserts the LSSS matrix 𝑀2 into matrix M.
10. for 𝑖: = 𝑙1 to 𝑙1 + 𝑙2 − 1 do
11. for 𝑗: = 0 to 𝑛1 + 𝑛2 do
12. if (𝑗 = 0) then 𝑀[𝑖, 𝑗] = 𝑀2[𝑖, 0]; continue;
13. else if (𝑗 > 1 and 𝑗 ≤ 𝑛1 + 1) 𝑀[𝑖, 𝑗] = 0;
14. else if (𝑗 = 1) 𝑀[𝑖, 𝑗] = 2 × 𝑀2[𝑖, 0];
15. else 𝑀[𝑖, 𝑗] = 𝑀2[𝑖 − 𝑙1, 𝑗 − 𝑛1 − 1]; end if
16. end for
17. end for
18. return 𝑀;

For example, assume that the access structure 𝐴1 = �(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 2), 𝑥𝑥4, 𝑥𝑥5, 3� is

formulated by the data owner, according to formulas (1) and (2), the LSSS matrix 𝑀1
corresponding to the access structure 𝐴1 is

𝑀1 =

⎝

⎜
⎛

1 1 1 1
1 1 1 2
1 1 1 3
1 2 4 0
1 3 9 0⎠

⎟
⎞

.

Assuming that the access structure 𝐴2 = (𝑦1,𝑦2,𝑦3, 2) is formulated by CSP, according to

formula (1), the LSSS matrix 𝑀2 corresponding to the access structure 𝐴2 is

𝑀2 = �
1 1
1 2
1 3

�.

The access strategies 𝐴1 and 𝐴2 constitute a common access structure

𝐴 = ��(𝑥𝑥1,𝑥𝑥2 , 𝑥𝑥3, 2), 𝑥𝑥4, 𝑥𝑥5, 3�, (𝑦1,𝑦2,𝑦3, 2),2�. Therefore, according to formula (5), insert
𝑀1 and 𝑀2 into 𝑀 to form the LSSS access structure (𝑀,𝜌) corresponding to the access
structure A, the generation process is shown in Fig. 2.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 573

Fig. 2. The generation of matrix M

In Fig. 2, 𝐴1 is the access structure formulated by data owner, and 𝐴2 is the access

structure formulated by CSP. The LSSS matrixes 𝑀1 and 𝑀2 corresponding to structure 𝐴1
and 𝐴2 are generated respectively. Insert 𝑀1 and 𝑀2 into the matrix M to form the LSSS
matrix M corresponding to the access structure A. Finally, the LSSS access structure (𝑀,𝜌) is
used for subsequent verification control of the user. Only if the attribute set owned by the user
satisfies A, the user can launch the data integrity verification on CSP.

4.2 Attribute key generation and distribution
In the process of verification control, since data owner is not always online, he needs to
outsource his attribute key to CSP, and then CSP replaces the data owner to distribute the key.
However, the key distributed by CSP instead of data owner will bring new problems. If data
owner directly stores the attribute key on CSP, the CSP can use the corresponding attribute key
to unlock the access strategy. Moreover, user sends his attribute set to CSP when applying for
the attribute key. The distribution of the attribute key is the only part that leaks the identity
information to each attribute authority. Therefore, user needs to hide his attributes when
applying for the attribute key from the CSP.

It can be seen from Section 4.1 that the access structure 𝐴 is constructed by data owner and
CSP together, and CSP cannot know the attribute value in the access strategy constructed by
data owner. Therefore, the attribute key corresponding to the attribute in the attribute set 𝑆1 is
generated by data owner before uploading the data. However, sending the attribute key
directly to CSP in plain text will bring new problems. CSP can use the corresponding attribute
key to unlock the access policy. At the same time, the attribute values in the attribute set 𝑆1 are
generally related to data content or the information of data owner. Publishing the attribute
values directly to CSP may cause privacy leakage. Data owner generates an index of the
attribute key during the generation of the attribute key, and then encrypts the attribute key
before uploading it.

𝑨𝒕𝒕𝑲𝒆𝒚𝑮𝒆𝒏𝑫𝑶(𝑆1): It is executed by data owner before uploading the data, with the
attribute set 𝑆1 as input. Data owner selects a random number 𝑢1 for 𝑥𝑥 ∈ 𝑆1 to calculate
𝐾𝑥 = ℎ𝑥

𝑢1 . To prevent CSP from obtaining 𝐾𝑥 , data owner will continue to calculate the
outsourced attribute key 𝐾𝑥′ . For 𝑥𝑥 ∈ 𝑆1, calculate the outsourced key 𝐾𝑥′ = (𝐾𝑥)−𝑟, where 𝑟

A1 = ((𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 2), 𝑥𝑥4, 𝑥𝑥5, 3) A2 = (y1, y2, y3, 2)

�
1 1
1 2
1 3

�

t M
⎝

⎜
⎛

1 1 1 1
1 1 1 2
1 1 1 3
1 2 4 0
1 3 9 0⎠

⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎛

1 1 1 1 1 0
1 1 1 1 2 0
1 1 1 1 3 0
1 1 2 4 0 0
1 1 3 9 0 0
1 2 0 0 0 1
1 2 0 0 0 2
1 2 0 0 0 3⎠

⎟
⎟
⎟
⎟
⎞

574 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

is a random number, and use the attribute value to encrypt the random number 𝑟 to generate 𝑟′
by the symmetric encryption algorithm AES, i.e., 𝑟′ = 𝐴𝐸𝑆.𝐸𝑛𝑐(𝑥𝑥, 𝑟). In order to enable user
to find the corresponding attribute key on CSP through the attribute value, for all 𝑥𝑥 ∈ 𝑆1, data
owner also calculates the index of the attribute key 𝑡𝑥 = 𝐻2(𝑒(𝐻1(𝑥𝑥),𝑔𝑠𝑘)). Data owner
sends 𝑠𝑘1′ = {𝐾𝑥′ , 𝑡𝑥 , 𝑟′}𝑥∈S1 to CSP.

When a user purchases or registers a service from CSP, he will execute 𝐴𝑡𝑡𝐺𝑒𝑛𝑢𝑠𝑒𝑟(𝑆′) to
generate an attribute set 𝑆′, and then send it to CSP. In 𝐴𝑡𝑡𝐺𝑒𝑛𝑢𝑠𝑒𝑟(𝑆′), in order to protect
user's privacy, user will hide some attributes.

𝑨𝒕𝒕𝑮𝒆𝒏𝒖𝒔𝒆𝒓(𝑆′): It is executed by user and takes the attribute set 𝑆′ owned by user as
input. Generally, it will be run when users register with CSP or purchase services. The user
attribute set is 𝑆′ = 𝑆1′ ∪ 𝑆2′ , where 𝑆1′ and 𝑆2′ are related to 𝑆1 and 𝑆2 in the user attribute set
respectively. Referring to the example in Section 4.1, when a user has a purchase behavior on
CSP, then one of the user's attribute set is 𝑆 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥4, 𝑥𝑥5,𝑦1,𝑦2}. Since the privacy of the
user is very important, the attributes in the access structure formulated by data owner generally
include data information. When the user browses the data or registers in CSP, he does not
expect CSP to know what data he has viewed. Therefore, it is necessary to hide the attributes in
𝑆1′ in the user attribute set at the stage of user applying for the attribute key. For all 𝑥𝑥𝑖 ∈ 𝑆1′ ,
calculate 𝑦𝑖 = 𝐻1(𝑥𝑥𝑖)𝑢𝑘, 𝑝𝑘𝑢 = (𝑔𝑠𝑘)1/𝑢𝑘 . Finally, the user sends 𝑌 = {𝑦𝑖}, 𝑝𝑘𝑢 and 𝑆2′ to
CSP to apply for the attribute key.

After CSP receives 𝑌 = {𝑦𝑖}, 𝑝𝑘𝑢 and 𝑆2′ , it searches the corresponding attribute key
according to the index 𝑡𝑥 and the attribute key 𝑌, and then generates the attribute key 𝑆𝐾2
related to 𝑆2′ and returns SK to user.

𝑨𝒕𝒕𝑲𝒆𝒚𝑮𝒆𝒏𝑪𝑺𝑷(𝑆2′): It is executed by CSP and takes the attribute set 𝑆2′ as input. CSP
searches the corresponding attribute key according to the index of data owner {𝑡𝑥}𝑥∈𝑆1. If

𝑡𝑥 = 𝐻2(e(𝑦𝑖 ,𝑝𝑘𝑢)) (7)
holds, CSP saves 𝐾𝑥′ and 𝑟𝑥′ to 𝑆𝐾1.

CSP selects the random number 𝛽 and calculates the attribute key 𝑆𝐾2 of the attribute
value in 𝑆2′ as

𝑆𝐾2 = �𝐾 = 𝑔𝛼𝑠2𝑔𝑎𝑘 ,𝐿1 = 𝑔𝑎𝑘 , 𝐿2 = ℎ𝑎𝑘 ,∀𝑥𝑥𝑖 ∈ 𝑆2
′ :𝐾𝑥𝑖 = ℎ𝑥𝑖

𝛽 �. (8)
CSP sends 𝑆𝐾1 and 𝑆𝐾2 to the corresponding users. After CSP returns 𝑆𝐾1 and 𝑆𝐾2 ,

user outsources the attribute key 𝐾𝑥′ , and the corresponding attribute key 𝐾𝑥 can be obtained.
𝑨𝒕𝒕𝑲𝒆𝒚𝑮𝒆𝒏𝑼𝒔𝒆𝒓(𝑆1, 𝑆𝐾2) : After receiving 𝑆𝐾1 and 𝑆𝐾2 , user decrypts 𝑟′ to obtain

𝑟 = 𝐴𝐸𝑆.𝐷𝑒𝑐(𝑥𝑥, 𝑟′), and calculates the attribute key 𝐾𝑥 = (𝐾𝑥′)𝑟.
The pseudo code of the attribute key generation and distribution is shown in Algorithm 2.
Algorithm 2. Attribute key generation algorithm
Input:(M,𝜌), 𝑆1, 𝑆2, and 𝑆′;
Output:𝑆𝐾1 , 𝑆𝐾2;

1. 𝐴𝑡𝑡𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑂(𝑆1), CSP←𝑆𝐾′1; // Generating attribute key for data owner
2. 𝐴𝑡𝑡𝐺𝑒𝑛𝑢𝑠𝑒𝑟(𝑆′), CSP←{Y,𝑝𝑘𝑢, 𝑆2′ }; // User requests the appropriate attribute key
3. for 𝑥𝑥 in 𝑆2′do CSP computes 𝑆𝐾2; end for // Generating attribute key
4. for 𝑦𝑖 in 𝑌 do
5. for 𝑡𝑥 in 𝑆𝐾′1 do
6. if formula (7) holds then 𝑆𝐾1←𝐾𝑥′ , 𝑟𝑥′; end if
7. end for
8. end for
9. return 𝑆𝐾1 , 𝑆𝐾2;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 575

4.3 Verification authority detection
This paper combines data owner and CSP to jointly generate sentinels for verification control.
The access structure (𝑀,𝜌) is constructed by data owner and CSP. Neither data owner nor
CSP can know the attribute value of the part of the attribute constructed by the other party in
the access structure. Thus, the verification sentry needs to be generated in two parts.
Specifically, data owner generates the verification sentry 𝑆𝑇𝐷𝑂 of the access structure
constructed by himself and the outsourcing key 𝑝𝑠,𝑖. CSP generates 𝐷𝑖 according to 𝑝𝑠,𝑖, and
then merges 𝑆𝑇𝐷𝑂 and 𝐷𝑖 into the verification sentry 𝑆𝑇.

𝑺𝒆𝒏𝒕𝒊𝒏𝒆𝒍𝑮𝒆𝒏𝑫𝑶(𝑀,𝜌): Data owner enters the access structure (𝑀,𝜌) to generate a part
of the verification sentry 𝑆𝑇𝐷𝑂. He randomly selects the secret 𝑠 ∈ 𝑍𝑝 and generates a vector
𝑣⃗ = (𝑠, 𝑧2, . . . , 𝑧𝑛) ∈ 𝑍𝑝, where 𝑧2, . . . , 𝑧𝑛 are used to share the secret 𝑠. For 𝑖 ∈ [1, 𝑙1], the
data owner calculates 𝜆𝑖 = 𝑀𝑖 ⋅ 𝑣⃗, where 𝑀𝑖 is the ith row of the matrix M. He chooses the
random number 𝑢2 ∈ 𝑍𝑝 and calculates 𝑆𝑇𝐷𝑂 as

𝑆𝑇𝐷𝑂 = (𝐷 = 𝑝𝑓 ⋅ 𝑒(𝑔,𝑔)𝑎s,𝐷1′ = 𝑔𝑎𝑢2 , 𝑖 ∈ [1, 𝑙1]:𝐷𝑖 = 𝑔𝑎𝜆𝑖ℎ𝜌(𝑖)
𝑢2)， (9)

where 𝑝𝑓 ∈ 𝑍𝑝, the function 𝜌 is an injective function, which maps each row in the matrix M
to an attribute in the attribute set S, namely 𝜌(𝑖) ∈ 𝑆. 𝑆𝑇𝐷𝑂 is an intermediate verification
sentinel generated by data owner, which is used for user's verification authority. Since 𝑠 is the
key that can be finally controlled by verification, in order to protect data owner's privacy, data
owner cannot send the secret 𝑠 as clear text to CSP. Thus, data owner calculates the
outsourcing key 𝑝𝑠,𝑖 of the secret 𝑠 by

𝑝𝑠,𝑖 = 𝑔𝑎(𝑠⋅𝑚𝑖,1−𝑚𝑖,1)， (10)
where 𝑖 ∈ [𝑙1 + 1, 𝑙1 + 𝑙2] and 𝑚𝑖,1 is the ith row and first column in the matrix 𝑀. Then
ℎ𝑎𝑠ℎ𝑝𝑓 = 𝐻(𝑝𝑓) is calculated, where 𝐻(∙) is an anti-collision hash function. Data owner
outsources the key𝑃𝑠 = {𝑝𝑠,𝑖}𝜌(𝑖)∈𝑆2 , and the outsourcing vector 𝑣⃗ ′ = (1, 𝑧2, . . . , 𝑧𝑛) , the
verification sentry 𝑆𝑇𝐷𝑂 and ℎ𝑎𝑠ℎ𝑝𝑓 are uploaded to CSP for storage.

𝑺𝒆𝒏𝒕𝒊𝒏𝒆𝒍𝑮𝒆𝒏𝑪𝑺𝑷((𝑀,𝜌), 𝑣⃗′, 𝑆𝑇𝐷𝑂 ,𝑃𝑠) : CSP inputs access structure (𝑀,𝜌) , the
outsourcing vector 𝑣⃗′, the outsourcing key 𝑃𝑠 generated by data owner, and the intermediate

verification sentry 𝑆𝑇𝐷𝑂 . CSP calculates 𝜆𝑖
′ = 𝑀𝑖 ⋅ 𝑣⃗′ , where 𝑖 ∈ [𝑙1 + 1, 𝑙1 + 𝑙2] , 𝑀𝑖

corresponds to the ith row in M. CSP chooses random 𝑘 ∈ 𝑍𝑝, and calculates 𝐷𝑖 by

𝐷𝑖 = 𝑔𝑎𝜆𝑖
′

𝑝𝑠,𝑖ℎ𝜌(𝑖)
𝑘 = 𝑔𝑎𝜆𝑖ℎ𝜌(𝑖)

𝑘 ， (11)

where λi = 𝑀𝑖 ⋅ 𝑣⃗. CSP gets sentinel 𝑆𝑇𝐶𝑆𝑃 = (𝐷2′ = 𝑔𝑎𝑘 , 𝑖 ∈ [𝑙1 + 1, 𝑙1 + 𝑙2]:𝐷𝑖).
Finally, the verification sentinel 𝑆𝑇 = 〈𝑆𝑇𝐷𝑂 , 𝑆𝑇𝐶𝑆𝑃〉 is output, and 𝑆𝑇 will then be used to

detect the user verification authority.
𝑨𝒖𝒕𝒉𝑷𝒓𝒐𝒐𝒇𝑮𝒆𝒏(𝑆𝐾1, 𝑆𝐾2 , 𝑆𝑇): The user generates 𝑝𝑓′ by this algorithm, and proves to

CSP that he satisfies the access structure (𝑀,𝜌), and can verify the data integrity. Assume that
user's attribute set 𝑆′ meets the access strategy constructed jointly by data owner and CSP. If
𝜆𝑖 is the effectively shared share of secret 𝑠, the Lagrange interpolation formula can be used to
find a set of coefficients in polynomial time {𝜔𝑖 ∈ 𝑍𝑝}𝑖∈𝐼 , so that ∑ 𝜔𝑖𝜆𝑖𝑖∈𝐼 = 𝑠 , where
𝐼 = {𝑖: 𝜌(𝑖) ∈ 𝑆′} ⊂ {1, . . . , 𝑙}. Then user calculates

𝑇 = 𝑒(D1′ D2′ ,𝐾)
∏ �𝑒(𝐷𝑖,𝐿)𝑒(D1′D2′ ,𝐾𝜌(𝑖))�𝜔𝑖𝑖∈𝐼

= 𝑒(𝑔,𝑔)𝑎s . (12)

576 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

User calculates 𝑝𝑓′ = 𝐷/𝑇 and then sends 𝑝𝑓′ to CSP to prove that the set of attributes he
possesses meets the access structure (𝑀,𝜌), so that he can verify the data integrity on CSP.

𝑽𝒆𝒓𝒊𝒇𝒚(𝑝𝑓′,𝑔𝑢𝑘): After CSP receives 𝑝𝑓′, it verifies whether user has the authority to
verify the data integrity on CSP. CSP verifies whether the attribute set owned by user satisfies
the access structure (𝑀,𝜌) by

ℎ𝑎𝑠ℎ𝑝𝑓 = 𝐻(𝑝𝑓′). (13)
If formula (13) holds, the attribute owned by user satisfies the access structure, and the

verification can be performed; otherwise, CSP rejects user's verification request.
The pseudo code of the process of verification authority detection is shown in Algorithm 3.

Algorithm 3. Verification authority detection algorithm
Input: 𝑆𝑇,𝐴;
Output: 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒;

1. for 𝑖: = 1 to 𝑙1 do
2. 𝑆𝑇𝐷𝑂←formula (9); end for // Generating 𝑆𝑇𝐷𝑂 for data owner.
3. for 𝑖 = 𝑙1 + 1 to 𝑙2 do
4. 𝑝𝑠,𝑖 ←formula (9); end for // Outsourced key 𝑝𝑠,𝑖
5. CSP←𝑃𝑠,𝑣⃗′, 𝑆𝑇𝐷𝑂, ℎ𝑎𝑠ℎ𝑝𝑓 ;
6. for 𝑖 = 𝑙1 + 1 to 𝑙2 do
7. 𝐷𝑖←formula (11); end for // Checking sentinel ST
8. CSP generates 𝑆𝑇; // Detecting user's authority
9. if user sends 𝑆 to CSP then CSP sends (𝑆𝑇,𝐴) to user;
10. User computes 𝑝𝑓′ and sends 𝑝𝑓′ to CSP;
11. if formula (13) holds then return true;
12. else return false;
13. end if

5. Algorithm Analysis
In this paper, the algorithm constructs the access structure by data owner and CSP to realize
the verification control of users, so that users without data access rights cannot launch the data
integrity verification for data owner. In order to illustrate the feasibility of the algorithm, the
security analysis is conducted in this section, and the theoretical analysis of computational
complexity and storage and transmission overhead is implemented in Section 6.1.

The discrete logarithm calculation hypothesis (abbreviated as DL problem) supposes that
a ∈ Zp∗ , p is a large prime number, and 𝑔1 is a generator of group 𝐺1, where 𝑔1𝑎 ∈ 𝐺1, 𝑔1 ∈ 𝐺1.
Take 𝑔1𝑎 as input and output 𝑎.

Definition 1. Discrete logarithm hypothesis (abbreviated as DL hypothesis). It exists
𝜀 > 0. The advantage of any attacker in solving the DL problem on group 𝐺1 in a polynomial
time algorithm 𝛩 is defined as follows

𝐴𝑑𝑣𝐷𝐿𝛩 = Pr �𝛩(𝑔1 ,𝑔1𝑎) = 𝑎:𝑎
𝑅
← 𝑍𝑝� ≤ 𝜀.

It can be seen from the above formula that the possibility of solving the DL problem is
equivalent to using a random number a to perform a violent collision on Θ, with a probability
of 1

𝑝
< 𝜀 . Let 𝑝 be a sufficiently large prime number. The advantage of solving the DL

problem can be ignored, because the solving probability is close to zero. That is to say, it is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 577

computationally difficult or impossible to solve the DL problem on the group 𝐺1 based on the
establishment of the above hypothesis [28].

Definition 2. Decision-making q-BDHE hypothesis. Assume that 𝐺 represents a bilinear
group of order 𝑝, 𝑔 and ℎ are two independent generators of the group, select a random value
𝛼 ∈ 𝑍𝑝 , and then define 𝑦𝑔,𝛼,𝑙 = (𝑔1 ,𝑔2, . . . ,𝑔𝑙 ,𝑔𝑙+2, . . . ,𝑔2𝑙) ∈ 𝐺2𝑙−1 , where 𝑔𝑖 = 𝑔(𝛼𝑖) .
The algorithm makes a guess based on the output value 𝑧 ∈ {0,1} . If
�Pr�B�𝑔,ℎ, 𝑦𝑔,𝛼,𝑙 , 𝑒(𝑔𝑙+1 ,ℎ)� = 0� − Pr�B�𝑔,ℎ,𝑦𝑔,𝛼,𝑙 ,𝑍� = 0�� ≥ 𝜀, then the advantage ε is
defined to solve the decision-making problem under groups 𝐺 and 𝐺𝑇. If no polynomial time
algorithm solves the decision-making problem with a non-negligible advantage, then the
decision-making hypothesis holds in groups 𝐺 and 𝐺𝑇.

5.1 Robustness of verification control
Users whose attribute set does not satisfy the access structure cannot pass verification control.
Suppose that the decision-making q-BDHE hypothesis holds. Without any polynomial time,
the adversary can selectively destroy the algorithm by challenging the LSSS matrix.

Init. Suppose adversary 𝐴 has a non-negligible advantage 𝜖 = 𝐴𝑑𝑣𝐴 to break this
algorithm. Adversary 𝐴 chooses an access structure (𝑀∗,𝜌∗), where 𝑀∗ has 𝑙∗ rows and 𝑛∗
columns.

Setup. The simulator chooses the random number 𝑎′ ∈ 𝑍𝑝, and 𝑎 = 𝑎′ + 𝑎𝑞+1, so that
𝑒(𝑔,𝑔)𝛼 = 𝑒(𝑔𝑎 ,𝑔𝑎𝑞)𝑒(𝑔,𝑔)𝑎′ . For 1 ≤ 𝑥𝑥 ≤ 𝑆, choose a random number 𝑧𝑥 . Let X denote
the index set 𝑖 , and 𝜌∗ = 𝑥𝑥 . The simulator calculates ℎ𝑥 by ℎ𝑥 = 𝑔𝑧𝑥 ∏ 𝑔𝑎𝑀𝑖,1

∗ /𝑏𝑖 ⋅𝑖∈𝑋
𝑔𝑎𝑀𝑖,1

∗ /𝑏𝑖 ⋯𝑔𝑎𝑀𝑖,1
∗ /𝑏𝑖. If 𝑋 = ∅, then ℎ𝑥 = 𝑔𝑧𝑥 .

Phase 1. In this phase, adversary 𝐴 generates attribute set 𝑆. At the same time, adversary 𝐴
sends 𝑆 to the simulator to obtain the private key, where S does not satisfy 𝑀∗. The simulator
selects a random number 𝑟 ∈ 𝑍𝑝, and then selects a vector 𝜔 = (𝜔1, . . . ,𝜔𝑛∗) ∈ 𝑍𝑝, where
𝜔1 = −1. According to the definition of the LSSS matrix, if the attribute set S does not satisfy
the access structure (𝑀∗,𝜌∗), there must be 𝜔 ⋅ 𝑀𝑖

∗ = 0 for any 𝜌(𝑖) ∈ 𝑆. The simulator will
define 𝑡 as 𝑡 = 𝑟 + 𝜔1𝑎𝑞 +𝜔2𝑎𝑞−1+. . . +𝜔𝑛∗𝑎𝑞−𝑛

∗+1.
And let 𝐿 = 𝑔r ∏ (𝑔𝑎𝑞+1−𝑖)ω𝑖𝑖=1,...,𝑛∗ = 𝑔t . The simulator calculates K by 𝐾 =

𝑔𝛼′𝑔𝑎𝑟 ∏ (𝑔𝑎𝑞+2−𝑖)ω𝑖𝑖=2,...,𝑛∗ .
For ∀𝑥𝑥 ∈ 𝑆, calculate 𝐾𝑥 by

𝐾𝑥 = 𝑔(𝑣𝑥+𝛽𝑑𝑥)𝑡𝛽 ∙� � (𝑔
�𝑎

𝑗

𝑏𝑖
�𝑟𝛽2 � (𝑔𝑎𝑞+1+𝑗−𝑘/𝑏𝑖)𝜔𝑘𝛽2

𝑘=1,…,𝑛∗,𝑘≠𝑗

)𝑀𝑖,𝑗
∗

𝑗=1,…,𝑛∗𝑖∈𝑋

Challenge. The adversary generates two plaintexts 𝑚0 and 𝑚1, and then sends them to the
simulator. The simulator randomly selects 𝑏 ∈ {0,1} , and then calculates 𝐶 = 𝑚𝑏𝑇 ∙
𝑒(𝑔𝑠 ,𝛼′),𝐶′ = 𝑔𝑠 . Applying the vector 𝑣⃗ = (𝑠, 𝑠𝑎 + 𝑦2′ , 𝑠𝑎2 + 𝑦3′ , … , 𝑠𝑎𝑛∗−1 + 𝑦𝑛∗

′) ∈
ℤ𝑝𝑛

∗, we have

𝐶𝑖 = (𝑔𝑣𝜌∗(𝑖) ∙ 𝐻(𝜌∗(𝑖)))𝛾𝑟𝑖
′
∙ (� 𝑔𝑎𝑀𝑖,𝑗𝑦𝑗

𝑗=1,…,𝑛∗
) ∙ �𝑔𝑏𝑖𝑠�

−𝛾�𝑣𝜌∗(𝑖)+𝑑𝜌∗(𝑖)�

∙ (� � (𝑔𝑎𝑗𝑠(𝑏𝑖/𝑏𝑘))𝛾𝑀𝑘,𝑗
∗

𝑗=1,…,𝑛∗𝑘∈𝑅𝑖

)

Phase 2. Repeat phase 1.
Guess. The adversary outputs a guess 𝑏′ to b. If 𝑏′ = 𝑏, the simulator outputs 0 to guess

578 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

𝑇 = 𝑒(𝑔,𝑔)𝑎𝑞+1𝑠; otherwise, it outputs 1,and T is one random element of the group G.
The advantage of calculating simulator B to get the correct guess result is 𝑃𝑟�𝐵�𝑦⃗,𝑇 =

𝑒(𝑔,𝑔)𝑎𝑞+1𝑠� = 0� = 1
2

+ 𝐴𝑑𝑣𝐴.

5.2 Resisting EDOS attacks
The security of many ABE schemes [28-29] and the schemes in this paper are based on the
assumption that no probabilistic polynomial time algorithm can solve the q-DBDH problem
and has a non-negligible advantage. This assumption is reasonable because the DL problem is
widely considered to be tricky in the large number domain [11-12], and the selected group is a
cyclic multiplicative group of prime order, where the q-DBDH problem is considered difficult.
Therefore, a malicious user cannot challenge a download request to CSP through the malicious
user, so that CSP continues to provide downloads, resulting in resource consumption and
EDOS attacks. Therefore, in order to prevent this kind of attack, CSP sends a verification
sentinel 𝑆𝑇 to verify whether a user has download permission before data downloading.
However, the size of 𝑆𝑇 is much smaller than the size of data on the CSP. Moreover, the
computation overhead of CSP executing the verification authority detection is much smaller
than that of CSP generating the integrity proof. Therefore, an EDOS attack cannot be caused.

5.3 Resisting collusion attacks
Because the access structure is constructed together by data owner and CSP. If the malicious
users collude with data owner, they only obtain the access structure 𝐴1 and generate the LSSS
matrix 𝑀1 referring to formula (3). However, they cannot obtain the access structure 𝐴2
provided by CSP so that they are impossible to generate the LSSS matrix 𝑀2 by formula (4).
Therefore, the LSSS matrix 𝑀 cannot be calculated by formula (5), that is, the malicious users
do not have the permission to verify the data integrity on CSP. In a similar manner, if the
malicious users collude with CSP, they will not be able to be granted the verification
authorization since the LSSS matrix 𝑀 cannot be calculated by formula (5).

Moreover, even if the malicious users collude with each other, they cannot grant the
verification authorization either. The reason is analyzed as follows. When a malicious user
obtains 𝑆𝐾1 and 𝑆𝐾2 from CSP, he needs to decrypt the outsourced attribute key 𝐾𝑥′ to obtain
the final attribute key 𝐾𝑥 . However, decrypting the outsourced attribute key, i.e., 𝐾𝑥′ (𝐾𝑥′ =
(𝐾𝑥)−𝑟), requires first to decrypt 𝑟′ to get 𝑟(𝑟 = AES. Dec�𝑥𝑥, 𝑟′�). But decrypting r′ requires
the attribute x. Even if malicious users collude with each other to obtain each other's attributes,
but it can be known in Section 5.1 that the adversary cannot selectively destroy the algorithm
by challenging the LSSS matrix without any polynomial time referring to Definition 2.

6. Performance Analysis

6.1 Theoretical analysis

6.1.1 Computational complexity
Let the multiplication operation consumption in 𝐺 be 𝑀𝑢𝑙𝐺 , exponential operation
consumption be 𝐸𝑥𝑥𝑝𝐺, and bilinear pairing operation (𝑒:𝐺 × 𝐺 → 𝐺𝑇) consumption be 𝑃𝑎𝑖𝑟.
The complexity of the algorithm needs to be analyzed from three aspects: the computation
overhead generated by data owner, the computation overhead generated by CSP, and the
computation overhead generated by user.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 579

(1) Computation overhead of data owner
Data owner executes 𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙𝐺𝑒𝑛𝐷𝑂((𝑀,𝜌),𝑃𝐾) to generate the verification sentry

𝑆𝑇𝐷𝑂 and 𝐴𝑡𝑡𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑂(𝑆1) to generate the intermediate key before uploading the data F.
Assuming that there are 𝑛1 attributes in the attribute set 𝑆1 , the calculation of
𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙𝐺𝑒𝑛𝐷𝑂((𝑀,𝜌),𝑃𝐾) consumes 𝐸𝑥𝑥𝑝𝐺 + 𝑙1(2𝑀𝑢𝑙𝐺 + 2𝐸𝑥𝑥𝑝𝐺) . The computation
overhead of 𝐴𝑡𝑡𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑂(𝑆1) is 2𝑙1𝐸𝑥𝑥𝑝𝐺.

(2) Computation overhead of CSP
CSP calculates 𝐶𝑖 and generates the attribute key 𝑆𝐾2 of the attribute set 𝑆2. Suppose there

are 𝑙2 attributes in the attribute set 𝑆2. The computation overhead of CSP calculating 𝐷𝑖 is
𝑙2(2𝑀𝑢𝑙𝐺 + 2𝐸𝑥𝑥𝑝𝐺) . The computation overhead of generating the attribute key 𝑆𝐾2 is
𝑀𝑢𝑙𝐺 + 4𝐸𝑥𝑥𝑝𝐺 + 𝑙2𝐸𝑥𝑥𝐺.

(3) Computation overhead of user (or TPA)
User's computation overhead is mainly generated by 𝐴𝑢𝑡ℎ𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛(𝑆𝐾, 𝑆𝑇). At this

stage, user generates 𝑝𝑓′ to prove that the set of attributes he possesses meets the access
structure (𝑀,𝜌). Suppose there are n attributes in the attribute set owned by the user, and the
computation overhead incurred by user at this stage is 𝑛𝐸𝑥𝑥𝐺 + (𝑛 + 1)𝑃𝑎𝑖𝑟.

6.1.2 Storage and transmission overhead
Assume that data owner manages 𝑛𝐷𝑂 attributes and CSP manages 𝑛𝐶𝑆𝑃 attributes. Let |𝑝| be
the element size of G in 𝑍𝑝. The storage and transmission overhead of the algorithm is also
analyzed from three aspects: storage and transmission overhead generated by data owner,
storage and transmission overhead generated by CSP, and the storage and transmission
overhead generated by user.

(1) Storage and transmission overhead of data owner
Since data owner needs to store all attribute keys, the storage overhead is 𝑛𝐷𝑂. At the same

time, he needs to transmit the sentinel and the encrypted attribute key to CSP, which consumes
the transmission overhead of 𝑛𝐷𝑂 + 1.

(2) Storage and transmission overhead of CSP
CSP needs to store and generate the attribute key and 𝐶𝑖 of the attribute set 𝑆2, and the

storage overhead is 𝑛𝐷𝑂 + 2 ∙ 𝑛𝐶𝑆𝑃 . Assume that 𝑛 users apply for attribute keys from CSP,
and each user applies for 𝑛𝑇𝑃𝐴 attribute keys, the transmission overhead of CSP is 𝑛 ∙ 𝑛𝑇𝑃𝐴 .

(3) Storage and transmission overhead of user (or TPA)
Let user have 𝑛𝑎𝑡𝑡 attributes. The storage overhead of user is 𝑛𝑎𝑡𝑡. The user needs to send

𝑝𝑓′ to CSP, and 𝑛𝑎𝑡𝑡 attributes need to be sent to CSP to apply for the attribute key. Therefore,
the transmission overhead of user is 𝑛𝑎𝑡𝑡 + 1.

6.2 Simulation
To further analyze the performance of the proposed algorithm, two laptops equipped with Intel
core i5-4210M 2.60GHz CPU and a 8GB RAM were used as data owner and user respectively.
A service system with 4 core CPU and a 8GB RAM was rented from CentOS Alibaba cloud
server to simulate CSP. The experimental code is based on PBC-0.5.14 (pairing-based
cryptography library), modified and written with CPABE-0.11. The size of element 𝑔 in group
G is 512 bits, and the length of elements in 𝑍𝑝is 160 bits. The access strategy in the form of
(𝑆1 AND 𝑆2 AND . . . AND 𝑆𝑛) is used to simulate the most complex situation, where 𝑆𝑖 is an
attribute. Each experiment was repeated 20 times in the same environment and the
experimental results were averaged. The proposed algorithm in this paper is called MV-VCP.

580 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

In the experiment, the performance of MV-VCP, the algorithms partially outsourced protocol
(POP) and fully outsourced protocol (FOP) [18], and CP-ABE [23] were compared.

(1) The computation overhead of data owner at the preprocessing phase
The preparation time refers to the calculation time of data owner before uploading the data

to CSP. It is seen from Fig. 3 that the computation overhead and the number of attributes
increase linearly. In Fig. 3, CP-ABE almost overlaps with POP and FOP since the running
time of CP-ABE is only a few milliseconds longer than that of POP and FOP. The computation
overhead of MV-VCP is higher than that of POP, FOP, and CP-ABE. However, in MV-VCP,
data owner not only encrypts the data according to the access structure, but also generates an
intermediate attribute key before uploading the data. Therefore, the calculation time of
MV-VCP at this stage is greater than that of POP and FOP. Moreover, data owner generates
the key during the preprocessing stage so that subsequent users will not apply to data owner
when applying for the attribute key through the attribute. It is only performed once during the
entire verification control process, so it will not cause a serious burden on data owner.

Fig. 3. Data owner preprocessing time

(2) Computation overhead at the key distribution phase
Fig. 4(a) shows the computation overhead incurred by data owner at the key distribution

phase. MV-VCP does not require user to apply for the attribute key from data owner, the
computation overhead of which is zero. POP requires user to apply for the attribute key from
data owner so that the key generation time is linearly related to the number of attributes as
shown in Fig. 4(a) while only one user applies for the attribute key. FOP consumes a few
milliseconds longer than POP and CP-ABE since data owner needs to generate a pair of
signature keys for each file in FOP. If multiple users apply for the attribute key, a large amount
of computation overhead will be consumed, making data owner vulnerable to resource
consumption. Data owner can also generate attribute keys for all attributes in attribute set 𝑆1 in
advance. When a user applies for an attribute key from the data owner, the data owner only
needs to extract the corresponding attribute key from the previously generated attribute key
and send it to the user. In this case, the computation overhead of data owner is also limited.

However, keys distributed by data owner is actually unreasonable. Data owner is not likely
to be online always. If a user applies for an attribute key and data owner is not online at that
time, the user has to wait until data owner is online. Moreover, if the key is distributed by data
owner, when user registers or purchases the service of CSP, CSP needs to forward the request
to data owner or user needs to find data owner to apply for the attribute key according to CSP's
guidelines. This process is extremely complicated.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 581

The computation overhead of CSP distributing key is shown in Fig. 4(b). Since CP-ABE,

POP and FOP will not be distributed by CSP, the computation overhead of POP, FOP and
CP-ABE is zero. The overhead of 𝐴𝑡𝑡𝐾𝑒𝑦𝐺𝑒𝑛𝐶𝑆𝑃(.) is still relatively large in Fig. 4(b). When
a user applies for an attribute key, CSP calculates the attribute set 𝑆2 attribute key, incurring a
large overhead. Therefore, the attribute key SK of the attribute set 𝑆2 can be generated by CSP
in advance. When a user applies for the key, CSP only needs to search for a key in SK.

(a) by DO (b) by CSP

Fig. 4. Key distribution time

 (3) Storage and transmission overhead
The storage overhead of attribute keys in MV-VCP is slightly higher than that of POP and

FOP, and the overhead of POP is equal to that of FOP as shown in Fig. 5. The overhead is
linearly related to the number of attributes in access structure A. When the number of attributes
is 8, even if the size of the attribute key is 2312KB, it does not burden CSP either since the
storage resources on CSP are very sufficient.

Fig. 5. Storage overhead of attribute keys

The transmission overhead of MV-VCP and POP at the verification authority detection

stage is shown in Fig. 6. The overhead of MV-VCP is slightly lower than that of POP and FOP.
At this stage, CSP sends the verification sentinel ST to user to perform authorization detection,
where the size of ST is linearly related to the number of attributes in the access structure A.
However, POP sends not only the ciphertext CT, but also a challenge of detecting user rights.
Moreover, the overhead of FOP is slightly higher than that of POP since FOP has to transmit
one more ciphertext of the signature key.

582 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

Fig. 6. Transmission overhead of authority

 (4) Verification authority detection
Before a user challenges data integrity verification to CSP, his authority needs to be

checked first. The experiment set up 10 users to challenge CSP, where each user only launched
a challenge. When a user who does not meet the access structure A challenges the data on CSP,
the computation overhead of CSP performing proof generation is shown in Fig. 7. It can be
seen that verification control in MV-VCP will greatly reduce the computation overhead of
CSP computing unnecessary verification proof relative to the traditional verification
algorithm, e.g., DHT-PA [13].

Fig. 7. Proof generation time of unqualified users (or TPAs)

Assume there are 50% of users in the experiment who do not have the authority to verify

the data integrity. The experimental results are shown in Fig. 8. It can be seen that the effective
verification of MV-VCP reaches 100%, while that of DHT-PA is 50%. This is mainly because
MV-VCP filters users who have no authority to verify the data integrity on CSP. However,
DHT-PA does not perform the authority check on users without the authority.

In summary, MV-VCP can perform verification control on users, construct the access
structure by CSP and data owner, and use the access structure to perform verification control
on users. The users can challenge the integrity verification of the corresponding data on CSP if
and only if the usrs meet the access structure. MV-VCP greatly reduces the computational
burden of CSP by removing the unauthorized verification.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 583

Fig. 8. Effective verification of users (or TPAs)

7. Conclusion

In the process of data integrity verification in cloud storage, users without data access
authority perform integrity verification, adding unnecessary verification overhead to data
owner. This paper proposes a verification control algorithm. The algorithm mainly includes
two aspects. On the one hand, data owner and CSP jointly construct the access structure, which
ensures the fairness of the integrity verification results. On the other hand, user hides CSP's
attributes during the key distribution stage to ensure user’s privacy. The proposed algorithm
can effectively intercept users without data access permissions, so that only users who meet
the access policy can perform data integrity verification. In the future, we will research the
verification control algorithm of multiple data owners.

References
[1] J. Brodkin, “Gartner: Seven cloud-computing security risks,” Infoworld, vol. 1, no. 1, pp. 1–3,

July 2, 2008.
[2] B. R. Kandukuri and A. Rakshit, “Cloud Security Issues,” in Proc. of the 2009 IEEE

International Conference on Services Computing, Bangalore, India: IEEE, pp. 517-520,
September 21-25, 2009. Article (CrossRef Link)

[3] Y. Li, Y. Yu, G. Min, W. Susilo, J. Ni and K.-K. R. Choo, “Fuzzy Identity-Based Data Integrity
Auditing for Reliable Cloud Storage Systems,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no.1, pp.72-83, January-February 1, 2019. Article (CrossRef Link)

[4] S. Zawoad, R. Hasan and K. Islam, “SECProv: Trustworthy and Efficient Provenance
Management in the Cloud,” in Proc. of the 2018 IEEE INFOCOM, Honolulu, HI, USA: IEEE,
pp. 1241-1249, April 16-19, 2018. Article (CrossRef Link)

[5] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo, Y. Dai, G Min, “Identity-Based Remote
Data Integrity Checking With Perfect Data Privacy Preserving for Cloud Storage,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 4, pp. 767-778, April, 2017.
Article (CrossRef Link)

[6] Y. Deswarte, J.-J. Quisquater and A. Saïdane, “Remote Integrity Checking - How to Trust Files
Stored on Untrusted Servers,” in Proc. of the Integrity and Internal Control in Information
Systems, Lausanne, Switzerland: Springer, pp. 1-11, November 13-14, 2003.
Article (CrossRef Link)

[7] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, D Song, “Provable data
possession at untrusted stores,” in Proc. of the ACM Conference on Computer and
Communications Security, Alexandria, VA, USA: ACM, pp. 598-609, October, 2007.
Article (CrossRef Link)

https://doi.org/10.1109/SCC.2009.84
https://doi.org/10.1109/tdsc.2017.2662216
https://doi.org/10.1109/infocom.2018.8485824
https://doi.org/10.1109/tifs.2016.2615853
https://doi.org/10.1007/1-4020-7901-x_1
https://doi.org/10.1145/1315245.1315318

584 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

[8] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Journal of Cryptology, vol. 26,
no. 3, pp. 442-483, July, 2013. Article (CrossRef Link)

[9] D. Boneh, B. Lynn, H. Shacham, “Short Signatures from the Weil Pairing,” Journal of
Cryptology, vol. 17, no. 4, pp. 297-319, September, 2004. Article (CrossRef Link)

[10] G. Yang, J. Yu, W. Shen, Q. Su, Z. Fu and R. Hao, “Enabling Public Auditing for Shared Data in
Cloud Storage Supporting Identity Privacy and Traceability,” Journal of Systems and Software,
vol. 113, no. C, pp. 130-139, March, 2016. Article (CrossRef Link)

[11] J. Shen, J. Shen, X. Chen, X. Huang and W. Susilo, “An Efficient Public Auditing Protocol With
Novel Dynamic Structure for Cloud Data,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 10, pp. 2402-2415, October, 2017. Article (CrossRef Link)

[12] J. M. Rivas, J. J. Gutiérrez, J. C. Palencia and M. G. Harbour, “Deadline Assignment in EDF
Schedulers for Real-Time Distributed Systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 10, pp. 2671-2684, October 1, 2015. Article (CrossRef Link)

[13] H. Tian, Y. Chen, C.-C. Chang, H. Jiang, Y. Huang, Y. Chen, J Liu, “Dynamic-Hash-Table
Based Public Auditing for Secure Cloud Storage,” IEEE Trans. Services Computing, vol. 10, no.
5, pp. 701-714, September 1, 2017. Article (CrossRef Link)

[14] T. Jiang, X. Chen and J. Ma, “Public Integrity Auditing for Shared Dynamic Cloud Data with
Group User Revocation,” IEEE Transactions on Computers, vol. 65, no. 8, pp. 2363-2373,
August1, 2016. Article (CrossRef Link)

[15] G. Xu, M. Lai, X. Feng, Q. Huang, X. Luo, L. Li and S. Li, “Verification Algorithm for the
Duplicate Verification Data with Multiple Verifiers and Multiple Verification
Challenges,” KSII Transactions on Internet and Information Systems, vol. 15, no. 2, pp. 558-579,
2021. Article (CrossRef Link)

[16] G. Xu, S. Han, Y. Bai, X. Feng and Y. Gan, “Data tag replacement algorithm for data integrity
verification in cloud storage,” Computers & Security, vol. 103, no. 3, pp.1-12, 2021.
Article (CrossRef Link)

[17] W. Shen, J. Qin, J. Yu, R. Hao and J. Hu, “Enabling Identity-Based Integrity Auditing and Data
Sharing with Sensitive Information Hiding for Secure Cloud Storage,” IEEE Trans. Information
Forensics and Security, vol. 14, no. 2, pp. 331-346, February, 2019. Article (CrossRef Link)

[18] K. Xue, W. Chen, W. Li, J. Hong and P. Hong, “Combining Data Owner-Side and Cloud-Side
Access Control for Encrypted Cloud Storage,” IEEE Trans. Information Forensics and Security,
vol. 13, no. 8, pp. 2062-2074, August, 2018. Article (CrossRef Link)

[19] J. Idziorek and M. Tannian, “Exploiting Cloud Utility Models for Profit and Ruin,” in Proc. of
the IEEE CLOUD, Washington, DC: IEEE, pp. 33-40, August, 2011. Article (CrossRef Link)

[20] N. Vlajic and A. Slopek, “Web bugs in the cloud: Feasibility study of a new form of EDoS
attack,” in Proc. of the GLOBECOM Workshops, Austin, TX, USA: IEEE, pp. 64-69,
December 8-12, 2014. Article (CrossRef Link)

[21] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, E Harris,
“Scarlett: Coping with skewed content popularity in mapreduce clusters,” in Proc. of the
Eurosys, Salzburg, Austria: ACM, pp.287-300, April, 2011. Article (CrossRef Link)

[22] Y. Zhang, C. Xu, X. Liang, H. Li, Y. Mu and X. Zhang, “Efficient Public Verification of Data
Integrity for Cloud Storage Systems from Indistinguishability Obfuscation,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 3, pp. 676-688, March, 2017.
Article (CrossRef Link)

[23] B Waters, “Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and
Provably Secure Realization,” in Proc. of the Public Key Cryptography, Taormina, Italy:
Springer, pp. 53-70, March 6-9, 2011. Article (CrossRef Link)

[24] B. Li, D. Huang, Z. Wang and Y. Zhu,“Attribute-based Access Control for ICN Naming
Scheme,” IEEE Trans. Dependable Sec. Comput, vol. 15, no. 2, pp. 194-206, March, 2018.
Article (CrossRef Link)

[25] T. V. X. Phuong, R. Ning, C. Xin and H. Wu, “Puncturable Attribute-Based Encryption for
Secure Data Delivery in Internet of Things,” in Proc. of the INFOCOM 2018, Honolulu, HI,
USA: IEEE, pp. 1511-1519, April 16-19, 2018. Article (CrossRef Link)

https://doi.org/10.1007/s00145-012-9129-2
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1016/j.jss.2015.11.044
https://doi.org/10.1109/tifs.2017.2705620
https://doi.org/10.1109/tpds.2014.2359449
https://doi.org/10.1109/tsc.2015.2512589
https://doi.org/10.1109/tc.2015.2389955
https://doi.org/10.3837/tiis.2021.02.010
https://doi.org/10.1016/j.cose.2021.102205
https://doi.org/10.1109/tifs.2018.2850312
https://doi.org/10.1109/tifs.2018.2809679
https://doi.org/10.1109/cloud.2011.45
https://doi.org/10.1109/glocomw.2014.7063387
https://doi.org/10.1145/1966445.1966472
https://doi.org/10.1109/tifs.2016.2631951
http://doi.org/doi:10.1007/978-3-642-19379-8_4
https://doi.org/10.1109/tdsc.2016.2550437
https://doi.org/10.1109/infocom.2018.8485909

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 2, February 2022 585

[26] J. Idziorek, M. Tannian and D. Jacobson, “Attribution of Fraudulent Resource Consumption in
the Cloud,” in Proc. of the IEEE CLOUD, Honolulu, HI, USA: IEEE, pp. 99-106, June 24-29,
2012. Article (CrossRef Link)

[27] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” EUROCRYPT, Aarhus, Denmark:
Springer, pp. 457-473, May 22-26, 2005. Article (CrossRef Link)

[28] V. Goyal, O. Pandey, A. Sahai and B. Waters, “Attribute-based encryption for fine-grained
access control of encrypted data,” in Proc. of the ACM Conference on Computer and
Communications Security, Alexandria, VA, USA: ACM, pp. 89-98, October, 2006.
Article (CrossRef Link)

[29] J. Bethencourt, A. Sahai and B. Waters, “Ciphertext-Policy Attribute-Based Encryption,” in
Proc. of the IEEE Symposium on Security and Privacy, Oakland, California, USA: IEEE, pp.
321-334, May 20-23, 2007. Article (CrossRef Link)

[30] Z Liu, Z Cao, “On Efficiently Transferring the Linear Secret-Sharing Scheme Matrix in
Ciphertext-Policy Attribute-Based Encryption,” IACR Cryptology ePrint Archive, January 2010.
Article (CrossRef Link).

Guangwei Xu is a professor in the School of Computer Science and Technology at
Donghua University, Shanghai, China. His research interests include remote data storage,
data integrity verification, privacy protection in data sharing, searchable encryption, QoS and
routing of the sensor network and internet of vehicles.

Shan Li is a master candidate in the School of Computer Science and Technology at
Donghua University, Shanghai, China. Her main research interests include the verification of
data integrity and privacy protection in data sharing.

Miaolin Lai is a master candidate in the School of Computer Science and Technology at
Donghua University, Shanghai, China. Her main research interests include the verification of
data integrity and searchable encryption.

https://doi.org/10.1109/cloud.2012.23
https://doi.org/10.1007/11426639_27
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1109/SP.2007.11
https://eprint.iacr.org/2010/374.pdf

586 Xu et al.: Verification Control Algorithm of Data Integrity Verification in Remote Data sharing

Yanglan Gan is an associate professor of the School of Computer Science and Technology
in Donghua University of China. She received her Ph.D. in computer science from Tongji
University of China in 2006. Her research interests are parallel and distributed computing,
cloud computing, and big data processing.

Xiangyang Feng is an associate professor in the School of Computer Science and
Technology at Donghua University, Shanghai, China. His research interests include the data
service, and data security.

Qiubo Huang is an associate professor in the School of Computer Science and Technology
at Donghua University, Shanghai, China. His research interests include QoS and routing of
the wireless and sensor networks, and data security.

Li Li is an associate professor in the College of Architecture and Urban Planning at Tongji
University, Shanghai, China. Her main research interests include the big data processing in
architecture and urban planning.

Wei Li is a professor in the School of Computer Science and Technology at Donghua
University, Shanghai, China. Her main research interests include the data service and
security.

