DOI QR코드

DOI QR Code

ON SPIRALLIKE FUNCTIONS RELATED TO BOUNDED RADIUS ROTATION

  • Cetinkaya, Asena (Department of Mathematics and Computer Science Istanbul Kultur University) ;
  • Tastan, Hakan Mete (Department of Mathematics, Faculty of Science, Istanbul University)
  • Received : 2021.09.25
  • Accepted : 2021.11.10
  • Published : 2022.03.25

Abstract

In the present paper, we prove the growth and distortion theorems for the spirallike functions class 𝓢k(λ) related to boundary radius rotation, and by using the distortion result, we get an estimate for the Gaussian curvature of a minimal surface lifted by a harmonic function whose analytic part belongs to the class 𝓢k(λ). Moreover, we determine and draw the minimal surface corresponding to the harmonic Koebe function.

Keywords

Acknowledgement

We would like to thank Professor Bahar KIRIK RACZ for her contribution to the drawing of the minimal surface in Figure 1 using the Maple program.

References

  1. Z. Boyd and M. Dorff, Harmonic univalent mappings and minimal graphs, In: Current Topics in Pure and Computational Complex Analysis, pp. 21-46, Trends in Mathematics, Springer, 2014.
  2. M. Chuaqui, P. Duren, and B. Osgood, The Schwarzian derivative for harmonic mappings, J. Analyse Math. 91 (2003), 329-351. https://doi.org/10.1007/BF02788793
  3. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
  4. R. Dey, The Weierstrass-Enneper representation using hodographic coordinates on a minimal surface, Proc. Indian Acad. Sci. (Math. Sci.) 113 (2003), no. 2, 189-193. https://doi.org/10.1007/BF02829769
  5. M. Dorff and J.S. Rolf, Anamorphosis, mapping problems, and harmonic univalent functions, In book: Explorations in Complex Analysis, pp. 197-269, Washington, 2012.
  6. P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, Berlin, New York, 1983.
  7. P.L. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004.
  8. P.L. Duren, W. Hengartner, and R.S. Laugesen, The argument principle for harmonic functions, Amer. Math. Montly 103 (1996), no. 5, 411-415. https://doi.org/10.1080/00029890.1996.12004761
  9. A.W. Goodman, Univalent functions Vol. I, II, Polygonal Pub. House, Washington, 1983.
  10. H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692. https://doi.org/10.1090/S0002-9904-1936-06397-4
  11. M.L. Mogra and O.P. Ahuja, On spirallike functions of order α and type β, Yokohama Math. J. 29 (1981), 145-156.
  12. B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math. 10 (1971), 6-16. https://doi.org/10.1007/BF02771515
  13. M.S. Robertson, Coefficients of functions with bounded boundary rotation, Canad. J. Math. 21 (1969), 1477-1482. https://doi.org/10.4153/CJM-1969-161-2
  14. L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pest. Mat. Fys. 62 (1932), 12-19. https://doi.org/10.21136/CPMF.1933.121951
  15. H. M. Ta,stan and Y. Polatoglu, An investigation on minimal surfaces of multivalent harmonic functions, General Mathematics 19 (2011), no. 1, 99-107.