Acknowledgement
We would like to thank Professor Bahar KIRIK RACZ for her contribution to the drawing of the minimal surface in Figure 1 using the Maple program.
References
- Z. Boyd and M. Dorff, Harmonic univalent mappings and minimal graphs, In: Current Topics in Pure and Computational Complex Analysis, pp. 21-46, Trends in Mathematics, Springer, 2014.
- M. Chuaqui, P. Duren, and B. Osgood, The Schwarzian derivative for harmonic mappings, J. Analyse Math. 91 (2003), 329-351. https://doi.org/10.1007/BF02788793
- J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
- R. Dey, The Weierstrass-Enneper representation using hodographic coordinates on a minimal surface, Proc. Indian Acad. Sci. (Math. Sci.) 113 (2003), no. 2, 189-193. https://doi.org/10.1007/BF02829769
- M. Dorff and J.S. Rolf, Anamorphosis, mapping problems, and harmonic univalent functions, In book: Explorations in Complex Analysis, pp. 197-269, Washington, 2012.
- P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, Berlin, New York, 1983.
- P.L. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004.
- P.L. Duren, W. Hengartner, and R.S. Laugesen, The argument principle for harmonic functions, Amer. Math. Montly 103 (1996), no. 5, 411-415. https://doi.org/10.1080/00029890.1996.12004761
- A.W. Goodman, Univalent functions Vol. I, II, Polygonal Pub. House, Washington, 1983.
- H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692. https://doi.org/10.1090/S0002-9904-1936-06397-4
- M.L. Mogra and O.P. Ahuja, On spirallike functions of order α and type β, Yokohama Math. J. 29 (1981), 145-156.
- B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math. 10 (1971), 6-16. https://doi.org/10.1007/BF02771515
- M.S. Robertson, Coefficients of functions with bounded boundary rotation, Canad. J. Math. 21 (1969), 1477-1482. https://doi.org/10.4153/CJM-1969-161-2
- L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pest. Mat. Fys. 62 (1932), 12-19. https://doi.org/10.21136/CPMF.1933.121951
- H. M. Ta,stan and Y. Polatoglu, An investigation on minimal surfaces of multivalent harmonic functions, General Mathematics 19 (2011), no. 1, 99-107.