Acknowledgement
This research was supported by 2022 Cultural Heritage Smart Preservation & Utilization R&D Program of Cultural Heritage Administration, National Research Institute of Cultural Heritage. (Project Name: Development of AI-based CAD conversion technology for traditional architecture drawing images, Project Number: 2022A02P03-001, Contribution Rate: 100%)
References
- 안대환, 목조 건축문화재 실측조사보고서에서 3D 스캔 데이터 활용의 기술 (記述) 내용에 관한 연구. 대한건축학회 논문집-계획계, 2015, 31.1: 65-74.
- 백민호.이해평, 전통사찰문화재의 방재대책에 관한연구. 한국화재소방학회 논문지, 2006, 20.2: 64-71.
- KRIZHEVSKY, Alex.SUTSKEVER, Ilya.HINTON, Geoffrey E, Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 2012, 25: 1097-1105.
- 이가윤, et al. 국내외 건축 문화재 지진 피해 사례 및 대응 현황. 한국공간구조학회지, 2020, 20.1: 4-11.
- 이영병, 화제사례-숭례문 화재사례 및 문화재 안전관리 대책. 방재와보험, 2008, 48-54.
- RONNEBERGER, Olaf.FISCHER, Philipp.BROX, Thomas, U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015. p. 234-241.
- SABA, Tanzila, et al. Evaluation of current documents image denoising techniques: a comparative study. Applied Artificial Intelligence, 2014, 28.9: 879-887. https://doi.org/10.1080/08839514.2014.954344
- SHI, Zhenghao, et al. A Chinese character structure preserved denoising method for Chinese tablet calligraphy document images based on KSVD dictionary learning. Multimedia Tools and Applications, 2017, 76.13: 14921-14936. https://doi.org/10.1007/s11042-016-4284-3
- 신병욱, 목조건축문화재에 있어서 변위 및 손상 유형에 관한 연구. 한국농촌건축학회논문집, 2019, 21.3: 25-32. https://doi.org/10.14577/kirua.2019.21.3.25
- ZHANG, Yudong, A fast document image denoising method based on packed binary format and source word accumulation. 2011.
- ZHU, Jun-Yan, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017. p. 2223-2232.
- 국립문화재연구소, (2019) 국가지정 건조물문화재 국보.보물 정기조사:서울, 국립문화재연구소, 2020, 16-21
- EGIAZARIAN, Vage, et al. Deep vectorization of technical drawings. In: European Conference on Computer Vision. Springer, Cham, 2020. p. 582-598.