DOI QR코드

DOI QR Code

알칼리 침출법을 통한 초경 공구의 재활용 및 자전연소합성법을 통해 제조된 나노급 탄화텅스텐 제조공정 연구

Recycling of Hardmetal Tool through Alkali Leaching Process and Fabrication Process of Nano-sized Tungsten Carbide Powder using Self-propagation High-temperature Synthesis

  • 강희남 (한국지질자원연구원 자원회수연구센터) ;
  • 정동일 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김영일 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김인영 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 박상철 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 남철우 (한국지질자원연구원 자원회수연구센터) ;
  • 서석준 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 이진영 (한국지질자원연구원 자원회수연구센터) ;
  • 이빈 (한국생산기술연구원 한국희소금속산업기술센터)
  • Kang, Hee-Nam (Geological Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jeong, Dong Il (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Young Il (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, In Yeong (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Park, Sang Cheol (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Nam, Cheol Woo (Geological Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Seo, Seok-Jun (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Lee, Jin Yeong (Geological Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Bin (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 투고 : 2022.02.11
  • 심사 : 2022.02.23
  • 발행 : 2022.02.28

초록

Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the high-efficiency recycling and quality improvement of tungsten-based materials have been developed.

키워드

과제정보

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('20011520')

참고문헌

  1. J. Garcia, V. C. Cipres, A. Blomqvist and B. Kaplan: Int. J. Refract. Met. Hard Mater., 80 (2019) 40. https://doi.org/10.1016/j.ijrmhm.2018.12.004
  2. J. Xiong, Z. Guo, M. Yang, W. Wan and G. Dong: Ceram. Int., 39 (2013) 337. https://doi.org/10.1016/j.ceramint.2012.06.031
  3. J. G. Kim, S. J. Hong and H. Y. Gang: Ceramist, 18 (2015) 72.
  4. Y. Qian and Z. Zhao: Crystals, 33 (2020) 507.
  5. A. Shemi, A. Magumise, S. Ndlovu and N. Sacks: Miner. Eng., 122 (2018) 195. https://doi.org/10.1016/j.mineng.2018.03.036
  6. K. S. Kim, I. H Kim, C. G Lee and C. B. Song: Resources Recycl., 29 (2020) 35. https://doi.org/10.7844/KIRR.2020.29.6.35
  7. W. G. Jung: J. Ind. Eng. Chem., 20 (2014) 2384. https://doi.org/10.1016/j.jiec.2013.10.017
  8. J. Lee, S. Kim and B. Kim: Metals, 7 (2017) 230. https://doi.org/10.3390/met7070230
  9. P. K. Katiyar and N. S. Randhawa: Int. J. Refract. Met. Hard Mater., 90 (2020) 105251. https://doi.org/10.1016/j.ijrmhm.2020.105251
  10. A. Bock and B. Zeiler: Int. J. Refract. Met. Hard Mater., 20 (2020) 23. https://doi.org/10.1016/S0263-4368(01)00067-1
  11. J. C. Kim and B. K. Kim: Scr. Mater., 50 (2004) 969. https://doi.org/10.1016/j.scriptamat.2004.01.015
  12. A. Hoseinpur, J. V. Khaki and M. S. Marashi: Mater. Res. Bull., 48 (2013) 399. https://doi.org/10.1016/j.materresbull.2012.10.036
  13. A. G. Merzhanov and I. P. Borovinskaya: International Journal of Self-Propagation High-Temperature Synthesis., M. V. Zakharova(Ed.), Allerton Press, Moscow (2008) 242.
  14. I. P Borovinskaya, I. T. Ignat'eva, V. I. Vershinnikov and N. V. Sachkova: Inorg. Mater., 40 (2004) 1043. https://doi.org/10.1023/B:INMA.0000046465.80133.4c
  15. G. Liu, J. Li and K. Chen: Int. J. Refract. Met. Hard Mater., 39 (2013) 90. https://doi.org/10.1016/j.ijrmhm.2012.09.002
  16. A. A. Zaytsev, I. P. Borovinskaya, V. I. Vershinnikov, I. Konyashin, E. I. Patsera, E. A. Levashov and B. Ries: Int. J. Refract. Met. Hard Mater., 50 (2015) 146. https://doi.org/10.1016/j.ijrmhm.2014.12.008
  17. C. Yin, Y. Peng, J. Ruan, L. Zhao, R. Zhang and Y. Du: Materials., 14 (2021) 1551. https://doi.org/10.3390/ma14061551
  18. Y. C. Wu, Y. Yang, X. Y. Tan, L. Luo, X. Zan, X. Y. Zhu, Q. Xu and J. G. Cheng: Front. Mater., 7 (2020) 94. https://doi.org/10.3389/fmats.2020.00094
  19. K. Aithal, H. N. Manjunath, N. R. Babu, P. Kumar and Atreya: AIP Conference Proceedings., 2204 (2020).
  20. P. J. Boruah, R. R. Khanikar and H. Bailung: Plasma Chem. Plasma Process., 40 (2020) 1019. https://doi.org/10.1007/s11090-020-10073-3