DOI QR코드

DOI QR Code

Protective Effects of Auraptene against Free Radical-Induced Erythrocytes Damage

  • Khadijeh, Jamialahmadi (Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences) ;
  • Amir Hossein, Amiri (Cancer Research Center, Shahrekord University of Medical Sciences) ;
  • Fatemeh, Zahedipour (Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences) ;
  • Fahimeh, Faraji (School of Pharmacy, Mashhad University of Medical Sciences) ;
  • Gholamreza, Karimi (Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences)
  • 투고 : 2021.03.12
  • 심사 : 2022.11.21
  • 발행 : 2022.12.30

초록

Objectives: Auraptene is the most abundant natural prenyloxycoumarin. Recent studies have shown that it has multiple biological and therapeutic properties, including antioxidant properties. Erythrocytes are constantly subjected to oxidative damage that can affect proteins and lipids within the erythrocyte membrane and lead to some hemoglobinopathies. Due to the lack of sufficient information about the antioxidant effects of auraptene on erythrocytes, this study intended to evaluate the potential of this compound in protecting radical-induced erythrocytes damages. Methods: The antioxidant activity of auraptene was measured based on DPPH and FRAP assays. Notably, oxidative hemolysis of human erythrocytes was used as a model to study the ability of auraptene to protect biological membranes from free radical-induced damage. Also, the effects of auraptene in different concentrations (25-400 µM) on AAPH-induced lipid/protein peroxidation, glutathione (GSH) content and morphological changes of erythrocytes were determined. Results: Oxidative hemolysis and lipid/protein peroxidation of erythrocytes were significantly suppressed by auraptene in a time and concentration-dependent manner. Auraptene prevented the depletion of the cytosolic antioxidant GSH in erythrocytes. Furthermore, it inhibited lipid and protein peroxidation in a time and concentration-dependent manner. Likewise, FESEM results demonstrated that auraptene reduced AAPH-induced morphological changes in erythrocytes. Conclusion: Auraptene efficiently protects human erythrocytes against free radicals. Therefore, it can be a potent candidate for treating oxidative stress-related diseases.

키워드

과제정보

This work was financially supported by a research grant (Grant No. 940748) from the Vice Chancellor of Research, Mashhad University of Medical Sciences, Mashhad, Iran. The results described in this paper were part of a PharmD student thesis (Thesis No. 1874).

참고문헌

  1. Sandhu IS, Ware K, Grisham MB. Peroxyl radical-mediated hemolysis: role of lipid, protein and sulfhydryl oxidation. Free Radic Res Commun. 1992;16(2):111-22.  https://doi.org/10.3109/10715769209049164
  2. Vercaemst L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J Extra Corpor Technol. 2008;40(4):257-67.  https://doi.org/10.1051/ject/200840257
  3. Rashidpour S, Zahedipour F, Karimi G, Jamialahmadi K. Protective effects of Osthole against free radical-induced hemolysis of erythrocytes. Pharm Sci. 2021;27(1):56-62. 
  4. Genovese S, Epifano F. Auraptene: a natural biologically active compound with multiple targets. Curr Drug Targets. 2011;12(3):381-6.  https://doi.org/10.2174/138945011794815248
  5. Bibak B, Shakeri F, Barreto GE, Keshavarzi Z, Sathyapalan T, Sahebkar A. A review of the pharmacological and therapeutic effects of auraptene. Biofactors. 2019;45(6):867-79.  https://doi.org/10.1002/biof.1550
  6. Tanaka T, Kohno H, Murakami M, Kagami S, El-Bayoumy K. Suppressing effects of dietary supplementation of the organoselenium 1,4-phenylenebis(methylene)selenocyanate and the Citrus antioxidant auraptene on lung metastasis of melanoma cells in mice. Cancer Res. 2000;60(14):3713-6. 
  7. Jang Y, Choo H, Lee MJ, Han J, Kim SJ, Ju X, et al. Auraptene mitigates Parkinson's disease-like behavior by protecting inhibition of mitochondrial respiration and scavenging reactive oxygen species. Int J Mol Sci. 2019;20(14):3409. 
  8. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996;239(1):70-6.  https://doi.org/10.1006/abio.1996.0292
  9. Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I. Antioxidant principles from Bauhinia tarapotensis. J Nat Prod. 2001;64(7):892-5.  https://doi.org/10.1021/np0100845
  10. Dodge JT, Mitchell C, Hanahan DJ. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963;100(1):119-30.  https://doi.org/10.1016/0003-9861(63)90042-0
  11. Jimenez I, Garrido A, Bannach R, Gotteland M, Speisky H. Protective effects of boldine against free radical-induced erythrocyte lysis. Phytother Res. 2000;14(5):339-43.  https://doi.org/10.1002/1099-1573(200008)14:5<339::AID-PTR585>3.0.CO;2-T
  12. Asha Devi S, Shiva Shankar Reddy CS, Subramanyam MV. Peroxyl-induced oxidative stress in aging erythrocytes of rat. Biogerontology. 2011;12(4):283-92.  https://doi.org/10.1007/s10522-011-9323-x
  13. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407-21.  https://doi.org/10.1016/0076-6879(90)86134-H
  14. Drabkin DL, Austin JH. Spectrophotometric studies: II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. J Biol Chem. 1935;112(1):51-65.  https://doi.org/10.1016/S0021-9258(18)74965-X
  15. Yang HL, Chen SC, Chang NW, Chang JM, Lee ML, Tsai PC, et al. Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem Toxicol. 2006;44(9):1513-21.  https://doi.org/10.1016/j.fct.2006.04.006
  16. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464-78.  https://doi.org/10.1016/0076-6879(90)86141-H
  17. Wang J, Sun B, Cao Y, Tian Y. Protection of wheat bran feruloyl oligosaccharides against free radical-induced oxidative damage in normal human erythrocytes. Food Chem Toxicol. 2009;47(7):1591-9.  https://doi.org/10.1016/j.fct.2009.04.006
  18. Beutler E. Glucose-6-phosphate dehydrogenase deficiency: a historical perspective. Blood. 2008;111(1):16-24.  https://doi.org/10.1182/blood-2007-04-077412
  19. Muller L, Frohlich K, Bohm V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011;129(1):139-48.  https://doi.org/10.1016/j.foodchem.2011.04.045
  20. Iranshahi M, Askari M, Sahebkar A, Adjipavlou-Litina D. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. DARU J Pharm Sci. 2009;17(2):99-103. 
  21. Mensor LL, Menezes FS, Leitao GG, Reis AS, dos Santos TC, Coube CS, et al. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res. 2001;15(2):127-30.  https://doi.org/10.1002/ptr.687
  22. Hirano R, Sasamoto W, Matsumoto A, Itakura H, Igarashi O, Kondo K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J Nutr Sci Vitaminol (Tokyo). 2001;47(5):357-62.  https://doi.org/10.3177/jnsv.47.357
  23. Jamialahmadi K, Arasteh O, Matbou Riahi M, Mehri S, RiahiZanjani B, Karimi G. Protective effects of glucosamine hydrochloride against free radical-induced erythrocytes damage. Environ Toxicol Pharmacol. 2014;38(1):212-9.  https://doi.org/10.1016/j.etap.2014.05.018
  24. Murakami A, Nakamura Y, Tanaka T, Kawabata K, Takahashi D, Koshimizu K, et al. Suppression by citrus auraptene of phorbol ester-and endotoxin-induced inflammatory responses: role of attenuation of leukocyte activation. Carcinogenesis. 2000;21(10):1843-50.  https://doi.org/10.1093/carcin/21.10.1843
  25. Soltani F, Mosaffa F, Iranshahi M, Karimi G, Malekaneh M, Haghighi F, et al. Auraptene from Ferula szowitsiana protects human peripheral lymphocytes against oxidative stress. Phytother Res. 2010;24(1):85-9.  https://doi.org/10.1002/ptr.2874
  26. Karimi G, Hassanzadeh M, Mehri S. Protective effect of Rosmarinus officinalis L. essential oil against free radical-induced erythrocyte lysis. Iran J Pharm Sci. 2005;1(4):231-6. 
  27. Tanaka T, Kawabata K, Kakumoto M, Hara A, Murakami A, Kuki W, et al. Citrus auraptene exerts dose-dependent chemopreventive activity in rat large bowel tumorigenesis: the inhibition correlates with suppression of cell proliferation and lipid peroxidation and with induction of phase II drug-metabolizing enzymes. Cancer Res. 1998;58(12):2550-6. 
  28. Tanaka T, Kawabata K, Kakumoto M, Makita H, Hara A, Mori H, et al. Citrus auraptene inhibits chemically induced colonic aberrant crypt foci in male F344 rats. Carcinogenesis. 1997;18(11):2155-61.  https://doi.org/10.1093/carcin/18.11.2155
  29. Mohajeri SA, Ghanbarabadi M, Iranshahi M, Amoueian S, Motamedshariaty VS. Neuroprotective effects of auraptene in a rat model of vascular dementia: behavioral, biochemical and histopathological evaluations. Eur Neuropsychopharmacol. 2016;26 Suppl 2:S648. 
  30. Dumaswala UJ, Zhuo L, Jacobsen DW, Jain SK, Sukalski KA. Protein and lipid oxidation of banked human erythrocytes: role of glutathione. Free Radic Biol Med. 1999;27(9-10):1041-9. https://doi.org/10.1016/S0891-5849(99)00149-5