DOI QR코드

DOI QR Code

Antioxidative Effects of Parnassia palustris L. Extract on Ferrous Sulfate-Induced Cellular Injury of Cultured C6 Glioma Cells

파킨슨씨병 유발물질인 황산철로 손상된 배양 신경아교세포에 대한 물매화 추출물의 항산화 효과

  • Young-Mi, Seo (Department of Nursing, Wonkwang Health Science University) ;
  • Seung-Bum, Yang (Depatment of Medical Non-Commissioned Officer, Wonkwang Health Science University)
  • 서영미 (원광보건대학교 간호학과) ;
  • 양승범 (원광보건대학교 의무부사관과)
  • Received : 2022.11.17
  • Accepted : 2022.12.06
  • Published : 2022.12.31

Abstract

This study sought to evaluate the mechanism of cellular injury caused by ferrous sulfate (FeSO4) and the protective effects of Parnassia palustris L. (PP) extract against FeSO4-induced cytotoxicity of cultured C6 glioma cells. FeSO4 is known to cause neurotoxicity and induce Parkinson's disease. The antioxidative effects of PP, such as superoxide dismutase (SOD)-like and superoxide anion-radical (SAR)-scavenging activities, as well as effects on cell viability, were studied. FeSO4 significantly decreased cell viability in a dose-dependent manner and the XTT50 value, the concentration of FeSO4 which reduced the cell viability by half, was measured at 63.3 μM in these cultures. FeSO4 was estimated to be highly cytotoxic by the Borenfreund and Puerner toxicity criteria. Quercetin, an antioxidant, significantly improved cell viability, damaged by FeSO4-induced cytotoxicity. While evaluating the protective effects of the PP extract on FeSO4-induced cytotoxicity, it was observed that the extract significantly increased cell viability compared to the FeSO4-treated group. Also, the PP extract showed superoxide dismutase (SOD)-like and superoxide anion radical (SAR)-scavenging activities. Based on these findings, it can be concluded that FeSO4 induced oxidative stress-related cytotoxicity, and the PP extract effectively protected against this cytotoxicity via its antioxidative effects. In conclusion, natural antioxidant sources such as PP may be agents useful for preventing oxidative stress-related cytotoxicity induced by heavy metal compounds such as the FeSO4, a known Parkinsonism inducer.

본 연구는 배양 C6 glioma 세포를 재료로 파킨슨병의 유발 물질인 황산철(FeSO4)의 신경독성과 이에 대한 물매화(Parnassia palustria L., PP) 추출물의 영향을 조사하였다. 이를 위하여 세포생존율을 비롯한 슈퍼뮤타제(SOD)-유사능 및 과산소음이온 라디칼(SAR)-소거능과 같은 항산화 효과를 분석하였다. 본 연구에서 FeSO4는 처리농도에 비례하여 세포생존율을 유의하게 감소시켰으며, 이 과정에서 XTT50값이 63.3 μM로 나타나 Borenfreund and Puerner의 독성판정기준에 따라 고독성 (highly-toxic)인 것으로 나타났다. 또한, 항산화제의 일종인 quercetin은 FeSO4의 독성으로 손상된 세포생존율을 유의하게 증가시켰다. 한편, PP 추출물은 FeSO4만을 처리한 것에 비하여 세포생존율을 유의하게 증가시켰으며, 동시에 SOD-유사 능과 SAR-소거능과 같은 항산화능을 나타냈다. 이상의 결과로부터, FeSO4의 세포독성에 산화적 손상이 관여하고 있으며, PP추출물은 항산화 효과에 의하여 FeSO4에 의한 세포독성을 효과적으로 방어하였다. 결론적으로, 물매화 추출물과 같은 천연물은 FeSO4와 같이 산화적 손상과 관련된 질환을 유발시키는 중금속화합물에 의한 독성을 개선 내지는 치료하는데 유용한 소재라고 생각된다.

Keywords

Acknowledgement

This paper was supported by Wonkwang Health Science University in 2022.

References

  1. Dorsey ER, Bastiaan RB. The Parkinson pandemic-a call to action. JAMA Neurology. 2018;75:9-10. https://doi.org/10.1001/jamaneurol.2017.3299
  2. Finkelstein DI, Billings JL, Adlard PA, Ayton S, Sedjahtera A, Masters CL, et al. The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease. Acta Neuropathol Commun. 2017;5:1-16. https://doi.org/10.1186/s40478-017-0456-2
  3. Gibb WRG, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry Res.1988;51:745-752. http://doi.org/10.1136/jnnp.51.6.745
  4. Yang KH. A study of degeneration of the dorsal vagal nucleus in Parkinson'disease and Lewy body disease. Kor J Gerontol. 1997;7:52-57.
  5. Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis. Neurotoxicology. 2005;26:701-719. https://doi.org/10.1016/j.neuro.2004.07.010
  6. Lee DY, Heo YS, Kim KH. Analysis of technology trends and technology covergence for Parkinson's disease therapeutics: Based on global patent information. Korea Convergence Society. 2020;3:135-143. https://doi.org/10.15207/JKCS.2020.11.3.135
  7. Lee SH, Seo YM. Alleviating effects of Euphorbiae humifusae L. extract on the neurotoxicity induced by lead. Korean J Clin Lab Sci. 2018;50:501-510. https://doi.org/10.15324/kjcls.2018.50.4.501
  8. Chung JH, Rim TS, Seo YM. Protective effect of Albizzia juribrissin leaf extract on the cytotoxicity induced by cupric acetate metallic mordant. J Environ Health Sci. 2019;45:520-528. https://doi.org/10.5668/JEHS.2019.45.5.520
  9. Jeong TS, Kim JG. Parnassia palustris population differences in three Korean habitat types. Landscape and Ecological Engineering. 2017;13:93-105. https://doi.org/10.1007/s11355-016-0305-7
  10. Hu YL, Li QQ, Zhang CH, Zhang J, Zhang CH, Cui ZH, et al. Flavonoids from Parnassia palustris Linn (Saxifragaceae). Biochem Syst Ecol. 2013;48:70-72. https://doi.org/10.1016/j.bse.2012.12.014
  11. Lavid N, Schwartz A, Yarden O, Tel-Or E. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphacaceae). Planta. 2001;212:323-331. https://doi.org/10.1007/s004250000400
  12. Yu H, Guo F, Liu D, Zhang Z. Complet chloroplast genome sequence of Parnassia palustris (Celastraceae). Mitochpondrial DNA PartB. 2019;4:1503-1504. https://doi.org/10.1080/23802359. 2019.1598808
  13. Jung JY, Seo YM, Jung IJ. Antioxidative effect of Crataegi fructus extract on the cytotoxicity of FeSO4, hair dye component. J Invest Cosmetol. 2013;9:355-360.
  14. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  15. Pyo AJ, Yoon MY, Yang HO. Cytotoxicity and protective effects of Smilax china L. extract on melanogenesis by FeSO4, an autooxidant of melaninformation. Kor J Aesth & Cosm. 2013;11:77-83.
  16. Chung JH, Lee GW, Seo YM. Protective Effect of Aster tataricus L. Extract on the dermal cytotoxicity induced by sodium bromate, oxidant of hair dye. Biomed Sci Letters. 2019;25:348-356. https://doi.org/10.15616/BSL.2019.25.4.348
  17. Association of Official Analytical Chemists (AOAC). Official method of analysis. 12th ed. Association of Official Analytical Chemists. Washington D.C. USA. 2005. p127-130.
  18. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. Comparison of the three radical-scavenging activity of propolis from several regions of Argentina. J Ethmopharmacol. 2000;71:109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  19. Marklund S, Marklund G. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:468-474.
  20. de-Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol. 2006;5:525-535. https://doi.org/10.1016/S1474-4422(06)70471-9
  21. Borenfreund E, Puerner JA. A simple quantitative procedure using monolayer culture for cytotoxicity assay (HTD/NR-90). J Tiss Cult Meth. 1985;9:7-9. https://doi.org/10.1007/BF01666038
  22. Coogan TP, Bare RM, Waalkes MP. Cadmium-induced DNA strand damage in cultured liver cells: reduction in cadmium genotoxicity following zinc pretreatment. Toxicol Appl Pharmacol. 1992;113:227-233. https://doi.org/10.1016/0041-008X(92)90118-C
  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin-protein reagent. J Biol Chem. 1951;193:265-271. https://doi.org/10.1016/S0021-9258(19)52451-6
  24. Yoon KC, Sohn YW. Antioxidative effect of Typha orientalis L. extract on the oxidative stress induced by cytotoxicity of cadmium sulfate. JEHS. 2019;45:62-70. https://doi.org/10.5668/JEHS.2019.45.1.62
  25. Jung JY, Jung IJ, Jekal SJ. The protective effect of Lonicerae flos extract on cultured C6 glioma cells damaged by aluminum of dementia inducer. Korean J Clin Lab Sci. 2017;49:271-278. https://doi.org/10.15324/kjcls.2017.49.3.271
  26. Kim TY, Jekal SJ. Antioxidative effect of Chelidonium majus extract on cultured NIH3T3 fibroblasts injured by cadmium chloride of toxicant. Kor J Clin Lab Sci. 2016;48:1-7. https://doi.org/ 10.15324/kjcls.2016.48.1.1