DOI QR코드

DOI QR Code

Update on the Taxonomy of Clinically Important Anaerobic Bacteria

임상적으로 중요한 무산소성 세균의 분류 업데이트

  • Myungsook, Kim (Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine)
  • 김명숙 (연세대학교 세브란스병원 진단검사의학과)
  • Received : 2022.07.26
  • Accepted : 2022.10.14
  • Published : 2022.12.31

Abstract

The taxonomy of bacteria in the field of clinical microbiology is in a state of constant flux. A large-scale revamping of the classification and nomenclature of anaerobic bacteria has taken place over the past few decades, mainly due to advances in molecular techniques such as 16S rRNA and whole genome sequencing (WGS). New genera and species have been added, and existing genera and species have been reclassified or renamed. A major role of the clinical microbiological laboratories (CMLs) is the accurate identification (ID) and appropriate antimicrobial susceptibility testing (AST) for clinically important bacteria, and rapid reporting and communication of the same to the clinician. Taxonomic changes in anaerobic bacteria could potentially affect the choice of appropriate antimicrobial agents and the antimicrobial breakpoints to use. Furthermore, current taxonomy is important to prevent treatment failures of emerging pathogenic anaerobes with antimicrobial resistance. Therefore, CMLs should periodically update themselves on the changes in the taxonomy of anaerobic bacteria and suitably inform clinicians of these changes for optimum patient care. This article presents an update on the taxonomy of clinically important anaerobic bacteria, together with the previous names or synonyms. This taxonomy update can help guide antimicrobial therapy for anaerobic bacterial infections and prevent treatment failure and can be a useful tool for both CMLs and clinicians.

임상미생물학 분야에서 세균의 분류는 끊임없이 변화하는 상태에 있다. 무산소성 세균의 대규모 분류와 명명법은 지난 수십년 동안 발생되었는데, 주로 16S rRNA 염기서열 분석 및 전체 게놈 염기서열(WGS) 분석과 같은 분자 기술의 발전 때문이다. 새로운 균속과 균종이 추가되었고, 기존 균종과 균속은 재분류되었거나 재명명되었다. 임상미생물검사실의 주요 역할은 임상적으로 중요한 세균의 정확한 동정 및 적절한 감수성 시험, 그리고 신속한 보고 및 임상의와의 의사 소통이다. 무산소성 세균의 분류학적 변화는 진단적으로 적절한 보고 항균제의 선택과 항균제 감수성 해석 기준의 적용에 잠정적으로 영향을 미칠 수 있다. 이는 신흥 병원성 무산소성 세균의 항균제 내성 및 잘못된 동정은 환자 치료에 있어서 부적절한 경험적 치료를 유발할 수 있기 때문이다. 따라서, 임상미생물검사실은 주기적으로 무산소성 세균의 분류학적 변경 사항을 업데이트하고, 임상의에게 이러한 변경 사항을 적절하게 알려야 한다. 이 논문에서는 임상적으로 중요한 무산소성 세균의 분류에 관한 업데이트을 제시하였고, 이전의 균명 또는 동의어을 함께 기술하였다. 무산소성 세균의 분류 업데이트는 무산소성 세균 감염에 대한 항균제 요법을 안내하고, 치료 실패를 예방하는데 임상미생물검사실과 임상의 모두에게 도움이 될 수 있다.

Keywords

References

  1. Jousimies-Somer H, Summanen P, Citron DM, Baron EJ, Wexler HM, Finegold SM. Wadsworch-KTL Anaerobic Bacteriology Manual. 6th ed. Belmont: Star Publishing Co; 2002.
  2. Nagy E. Anaerobic infections: update on treatment considerations. Drugs. 2010 May 7;70(7):841-58. https://doi.org/10.2165/11534490-000000000-00000
  3. Park Y, Lee Y, Kim M, Choi JY, Yong D, Jeong SH, et al. Recent trends of anaerobic bacteria isolated from clinical specimens and clinical characteristics of anaerobic bacteremia. Infect Chemother. 2009;41:216-223. https://doi.org/10.3947/ic.2009.41.4.216
  4. Janda JM. Taxonomic update on proposed nomenclature and classification changes for bacteria of medical importance, 2015. Diagn Microbiol Infect Dis. 2016;86:123-127. https://doi.org/10.1016/j.diagmicrobio.2016.06.021
  5. Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E, et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol. 2014;64:384-391. https://doi.org/10.1099/ijs.0.057091-0
  6. Munson E. Moving targets of bacterial taxonomy revision: what are they and why should we care?. Clin Microbiol Newsl. 2020;42:111-120. https://doi.org/10.1016/j.clinmicnews.2020.06.002
  7. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 28th ed, M100. Wayne: Clinical and Laboratory Standards Institute; 2018.
  8. Kuijper EJ, Barbut F, Brazier JS, Kleinkauf N, Eckmanns T, Lambert ML, et al. Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill. 2008;13:18942.
  9. Lotte R, Lotte L, Ruimy R. Actinotignum schaalii (formerly Actinobaculum schaalii): a newly recognized pathogen-review of the literature. Clin Microbiol Infect. 2016;22:28-36. https://doi.org/10.1016/j.cmi.2015.10.038
  10. Murdoch DA. Gram-positive anaerobic cocci. Clin Microbiol Rev. 1998;11:81-120. https://doi.org/10.1128/CMR.11.1.81
  11. Ezaki T, Yamamoto N, Ninomiya K, Suzuki S, Yauuchi E. Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int J Syst Bacteriol. 1983;33:683-698. https://doi.org/10.1099/00207713-33-4-683
  12. Murdoch DA, Shah HN. Reclassification of Peptostreptococcus magnus (Prevot 1933) Holdeman and Moore 1972 as Finegoldia magna comb. nov. and Peptostreptococcus micros (Prevot 1933) Smith 1957 as Micromonas micros comb. nov. Anaerobe. 1999;5:555-559. https://doi.org/10.1006/anae.1999.0197
  13. Tindall BJ, Euzeby JP. Proposal of Parvimonas gen. nov. and Quatrionicoccus gen. nov. as replacements for the illegitimate, prokaryotic, generic names Micromonas Murdoch and Shah 2000 and Quadricoccus Maszenan et al. 2002, respectively. Int J Syst Evol Microbiol. 2006;56:2711-2713. https://doi.org/10.1099/ijs.0.64338-0
  14. Ezaki T, Kawamura Y, Li N, Li ZY, Zhao L, Shu S. Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol. 2001;51:1521-1528. https://doi.org/10.1099/00207713-51-4-1521
  15. Ueki A, Abe K, Suzuki D, Kaku N, Watanabe K, Ueki K. Anaerosphaera aminiphila gen. nov., sp. nov., a glutamate-degrading, Gram-positive anaerobic coccus isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol. 2009;59:3161-3167. https://doi.org/10.1099/ijs.0.011858-0
  16. Ulger-Toprak N, Liu C, Summanen PH, Finegold SM. Murdochiella asaccharolytica gen. nov., sp. nov., a Gram-stain-positive, anaerobic coccus isolated from human wound specimens. Int J Syst Evol Microbiol. 2010;60:1013-1016. https://doi.org/10.1099/ijs.0.015909-0
  17. Collins MD, Wallbanks S. Comparative sequence analyses of the 16S rRNA genes of Lactobacillus minutus, Lactobacillus rimae and Streptococcus parvulus: proposal for the creation of a new genus Atopobium. FEMS Microbiol Lett. 1992;74:235-240. https://doi.org/10.1111/j.1574-6968.1992.tb05372.x
  18. Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2008;58:1896-1902. https://doi.org/10.1099/ijs.0.65208-0
  19. Marchandin H, Teyssier C, Campos J, Jean-Pierre H, Roger F, Gay B, et al. Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. Int J Syst Evol Microbiol. 2010;60:1271-1279. https://doi.org/10.1099/ijs.0.013102-0
  20. Marchandin H, Teyssier C, Simeon de Buochberg M, Jean-Pierre H, Carriere C, Jumas-Bilak E. Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology (Reading). 2003;149:1493-1501. https://doi.org/10.1099/mic.0.26132-0
  21. Henssge U, Do T, Radford DR, Gilbert SC, Clark D, Beighton D. Emended description of Actinomyces naeslundii and descriptions of Actinomyces oris sp. nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963. Int J Syst Evol Microbiol. 2009;59:509-516. https://doi.org/10.1099/ijs.0.000950-0
  22. Yassin AF, Sproer C, Pukall R, Sylvester M, Siering C, Schumann P. Dissection of the genus Actinobaculum: Reclassification of Actinobaculum schaalii Lawson et al. 1997 and Actinobaculum urinale Hall et al. 2003 as Actinotignum schaalii gen. nov., comb. nov. and Actinotignum urinale comb. nov., description of Actinotignum sanguinis sp. nov. and emended descriptions of the genus Actinobaculum and Actinobaculum suis; and re-examination of the culture deposited as Actinobaculum massiliense CCUG 47753T ( = DSM 19118T), revealing that it does not represent a strain of this species. Int J Syst Evol Microbiol. 2015;65:615-624. https://doi.org/10.1099/ijs.0.069294-0
  23. Greub G, Raoult D. "Actinobaculum massiliae," a new species causing chronic urinary tract infection. J Clin Microbiol. 2002;40: 3938-3941. https://doi.org/10.1128/JCM.40.11.3938-3941.2002
  24. Lawson PA, Falsen E, Akervall E, Vandamme P, Collins MD. Characterization of some Actinomyces-like isolates from human clinical specimens: reclassification of Actinomyces suis (Soltys and Spratling) as Actinobaculum suis comb. nov. and description of Actinobaculum schaalii sp. nov. Int J Syst Bacteriol. 1997;47: 899-903. https://doi.org/10.1099/00207713-47-3-899
  25. Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66:4422-4432. https://doi.org/10.1099/ijsem.0.001367
  26. Huys G, Vancanneyt M, D'Haene K, Falsen E, Wauters G, Vandamme P. Alloscardovia omnicolens gen. nov., sp. nov., from human clinical samples. Int J Syst Evol Microbiol. 2007;57:1442-1446. https://doi.org/10.1099/ijs.0.64812-0
  27. Jian W, Dong X. Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol. 2002;52:809-812. https://doi.org/10.1099/00207713-52-3-809
  28. Mattarelli P, Bonaparte C, Pot B, Biavati B. Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies: Bifidobacterium longum subsp. longum subsp. nov., Bifidobacterium longum subsp. infantis comb. nov. and Bifidobacterium longum subsp. suis comb. nov. Int J Syst Evol Microbiol. 2008;58:767-772. https://doi.org/10.1099/ijs.0.65319-0
  29. Kageyama A, Benno Y, Nakase T. Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. Int J Syst Bacteriol. 1999;49:557-565. https://doi.org/10.1099/00207713-49-2-557
  30. Wurdemann D, Tindall BJ, Pukall R, Lunsdorf H, Strompl C, Namuth T, et al. Gordonibacter pamelaeae gen. nov., sp. nov., a new member of the Coriobacteriaceae isolated from a patient with Crohn's disease, and reclassification of Eggerthella hongkongensis Lau et al. 2006 as Paraeggerthella hongkongensis gen. nov., comb. nov. Int J Syst Evol Microbiol. 2009;59:1405-1415. https://doi.org/10.1099/ijs.0.005900-0
  31. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol. 2016;66:1009-1016. https://doi.org/10.1099/ijsem.0.000824
  32. Allen-Vercoe E, Daigneault M, White A, Panaccione R, Duncan SH, Flint HJ, et al. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe. 2012;18(5):523-529. https://doi.org/10.1016/j.anaerobe.2012.09.002
  33. Taras D, Simmering R, Collins MD, Lawson PA, Blaut M. Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2002;52:423-428. https://doi.org/10.1099/00207713-52-2-423
  34. Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prevot 1938. Anaerobe. 2016;40:95-99. https://doi.org/10.1016/j.anaerobe.2016.06.008
  35. Gerritsen J, Fuentes S, Grievink W, van Niftrik L, Tindall BJ, Timmerman HM, et al. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int J Syst Evol Microbiol. 2014;64: 1600-1616. https://doi.org/10.1099/ijs.0.059543-0
  36. Sasi Jyothsna TS, Tushar L, Sasikala C, Ramana CV. Paraclostridium benzoelyticum gen. nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. Proposal of a new genus Paeniclostridium gen. nov. to accommodate Clostridium sordellii and Clostridium ghonii. Int J Syst Evol Microbiol. 2016;66:1268-1274. https://doi.org/10.1099/ijsem.0.000874
  37. Kaur S, Yawar M, Kumar PA, Suresh K. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov. Int J Syst Evol Microbiol. 2014;64:710-718. https://doi.org/10.1099/ijs.0.056986-0
  38. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20:593-621. https://doi.org/10.1128/CMR.00008-07
  39. Shah HN, Collins DM. Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol. 1990;40:205-208. https://doi.org/10.1099/00207713-40-2-205
  40. Shah HN, Collins MD. Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas. Int J Syst Bacteriol. 1988;38:128-131. https://doi.org/10.1099/00207713-38-1-128
  41. Sakamoto M, Benno Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as ParaBacteroides distasonis gen. nov., comb. nov., ParaBacteroides goldsteinii comb. nov. and ParaBacteroides merdae comb. nov. Int J Syst Evol Microbiol. 2006;56:1599-1605. https://doi.org/10.1099/ijs.0.64192-0
  42. Sakamoto M, Suzuki N, Matsunaga N, Koshihara K, Seki M, Komiya H, et al. ParaBacteroides gordonii sp. nov., isolated from human blood cultures. Int J Syst Evol Microbiol. 2009;59:2843-2847. https://doi.org/10.1099/ijs.0.010611-0
  43. Sakamoto M, Kitahara M, Benno Y. ParaBacteroides johnsonii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2007;57:293-296. https://doi.org/10.1099/ijs.0.010611-0
  44. Kim H, Im WT, Kim M, Kim D, Seo YH, Yong D, et al. ParaBacteroides chongii sp. nov., isolated from blood of a patient with peritonitis. J Microbiol. 2018;56:722-726. http://www. springerlink.com/content/120956. https://doi.org/10.1007/s12275-018-8122-3
  45. Downes J, Liu M, Kononen E, Wade WG. Prevotella micans sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2009;59:771-774. https://doi.org/10.1099/ijs.0.002337-0
  46. Alauzet C, Mory F, Carlier JP, Marchandin H, Jumas-Bilak E, Lozniewski A. Prevotella nanceiensis sp. nov., isolated from human clinical samples. Int J Syst Evol Microbiol. 2007;57:2216-2220. https://doi.org/10.1099/ijs.0.65173-0
  47. Willems A, Collins MD. 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapsalo et al.) are genealogically highly related and are members of the genus Prevotella: emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. Nov. Int J Syst Bacteriol. 1995;45:832-826. https://doi.org/10.1099/00207713-45-4-832
  48. Haapasalo M. Black-pigmented gram-negative anaerobes in endodontic infections. FEMS Immunol Med Microbiol. 1993;6:213-217. https://doi.org/10.1111/j.1574-695X.1993.tb00329.x
  49. Sakamoto M, Li D, Shibata Y, Takeshita T, Yamashita Y, Ohkuma M. Porphyromonas pasteri sp. nov., isolated from human saliva. Int J Syst Evol Microbiol. 2015;65:2511-2515. https://doi.org/10.1099/ijs.0.000294
  50. Kawamura Y, Kuwabara S, Kania SA, Kato H, Hamagishi M, Fujiwara N, et al. Porphyromonas pogonae sp. nov., an anaerobic but low concentration oxygen adapted coccobacillus isolated from lizards (Pogona vitticeps) or human clinical specimens, and emended description of the genus Porphyromonas Shah and Collins 1988. Syst Appl Microbiol. 2015;38:104-109. https://doi.org/10.1016/j.syapm.2014.11.004
  51. Conrads G, Claros MC, Citron DM, Tyrrell KL, Merriam V, Goldstein EJC. 16S-23S rDNA internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Fusobacterium. Int J Syst Evol Microbiol. 2002;52:493-499. https://doi.org/10.1099/00207713-52-2-493
  52. Kook JK, Park SN, Lim YK, Choi MH, Cho E, Kong SW, et al. Fusobacterium nucleatum subsp. fusiforme Gharbia and Shah 1992 is a later synonym of Fusobacterium nucleatum subsp. vincentii Dzink et al. 1990. Curr Microbiol. 2013;66:414-417. https://doi.org/10.1007/s00284-012-0289-y
  53. Kook JK, Park SN, Lim YK, Cho E, Jo E, Roh H, et al. Genome-Based Reclassification of Fusobacterium nucleatum Subspecies at the Species Level. Curr Microbiol. 2017;74:1137-1147. https://doi.org/10.1007/s00284-017-1296-9
  54. Dorsch M, Lovet DN, Bailey GD. Fusobacterium equinum sp. nov., from the oral cavity of horses. Int J Syst Evol Microbiol. 2001;51:1959-1963. https://doi.org/10.1099/00207713-51-6-1959
  55. Jalava J, Eerola E. Phylogenetic analysis of Fusobacterium alocis and Fusobacterium sulci based on 16S rRNA gene sequences: proposal of Filifactor alocis (Cato, Moore and Moore) comb. nov. and Eubacterium sulci (Cato, Moore and Moore) comb. nov. Int J Syst Bacteriol. 1999;49:1375-1379. https://doi.org/10.1099/00207713-49-4-1375
  56. Park SN, Lim YK, Shin JH, Kim HS, Jo E, Lee WP, et al. Fusobacterium pseudoperiodonticum sp. nov., Isolated from the Human Oral Cavity. Curr Microbiol. 2019;76:659-665. https://doi.org/10.1007/s00284-019-01675-y
  57. Downes J, Munson M, Wade WG. Dialister invisus sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2003;53:1937-1940. https://doi.org/10.1099/ijs.0.02640-0
  58. Rocas IN, Siqueira JF Jr, Debelian GJ. Analysis of symptomatic and asymptomatic primary root canal infections in adult Norwegian patients. J Endod. 2011;37:1206-1212. https://doi.org/10.1016/j.joen.2011.05.026
  59. Wexler HM, Reeves D, Summanen PH, Molitoris E, McTeague M, Duncan J, et al. Sutterella wadsworthensis gen. nov., sp. nov., bile-resistant microaerophilic Campylobacter gracilis-like clinical isolates. Int J Syst Bacteriol. 1996;46:252-258. https://doi.org/10.1099/00207713-46-1-252
  60. Baron EJ. Bilophila wadsworthia: a unique Gram-negative anaerobic rod. Anaerobe. 1997;3:83-86. https://doi.org/10.1006/anae.1997.0075