DOI QR코드

DOI QR Code

Evaluation of Commercial Anion Exchange Membrane for the application to Water Electrolysis

수전해 시스템에 적용하기 위한 상용 음이온교환막의 특성평가

  • Jun Ho, Park (Department of Polymer Science & Engineering School of Materials Science & Engineering, Gyeongsang National University) ;
  • Kwang Seop, Im (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Sang Yong, Nam (Department of Polymer Science & Engineering School of Materials Science & Engineering, Gyeongsang National University)
  • 박준호 (경상국립대학교 고분자공학과) ;
  • 임광섭 (경상국립대학교 나노신소재융합공학과) ;
  • 남상용 (경상국립대학교 고분자공학과)
  • Received : 2022.12.19
  • Accepted : 2022.12.23
  • Published : 2022.12.31

Abstract

In this study, we sought to verify the applicability of anion exchange membrane water electrolysis system using FAA-3-50, Neosepta-ASE, Sustainion grade T, and Fujifilm type 10, which are commercial anion exchange membranes. The morphology of the commercial membranes and the elements on the surface were analyzed using SEM/EDX to confirm the distribution of functional groups included in the commercial membranes. In addition, mechanical strength and decomposition temperature were measured using UTM and TGA to check whether the driving conditions of the water electrolyte were satisfied. The ion exchange capacity and ion conductivity were measured to understand the performance of anion exchange membranes, and the alkaline resistance of each commercial membrane was checked and durability test was performed because they were driven in an alkaline environment. Finally, a membrane-electrode assembly was manufactured and a water electrolysis single cell test was performed to confirm cell performance at 60℃, 70℃, and 80℃. The long-term cell test was measured 20 cycles at other temperatures to compare water electrolysis performance.

본 연구에서는 음이온 교환막 수전해 시스템에 적용가능성을 확인하고자 상용 음이온 교환막인 FAA-3-50, Neosepta-ASE, Sustainion grade T, Fujifilm type 10의 관련 물성을 평가하였다. 음이온교환막을 이용하는 특성상 음이온교환기의 확인을 위하여 SEM/EDX를 이용하여 상용막의 모폴로지와 표면의 원소를 분석하여 상용막이 포함하고 있는 작용기의 분포를 확인하였다. 또한, UTM과 TGA를 이용하여 기계적 강도 및 열분해온도를 측정하여 수전해의 구동조건을 만족하는지 확인하였다. 음이온 교환막으로서의 성능을 파악하기 위하여 중요한 특성인 이온교환용량과 이온전도도를 측정하였으며, 알칼리 환경에서 구동되기 때문에 각각의 상용막의 내알칼리성을 확인하기 위한 내구성 테스트를 진행하여 비교하였다. 최종적으로 막-전극 접합체를 제조하여 수전해 single cell test를 진행하여 60℃, 70℃, 80℃의 온도 조건에서 cell 성능을 확인하였고 장기 cell test로 다른 온도에서 20 cycle 측정하여 수전해 성능을 비교하여 상용막의 음이온 교환막 수전해에 적용가능성을 비교하여 확인하였다.

Keywords

Acknowledgement

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20015599) 그리고 이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No.2020R1A6A03038697)

References

  1. K. R. Paik and Y. S. Woo, "Changing climate in our lifetime: A review", J. Korea Water Resour. Assoc., 51, 1045-1056 (2018).
  2. J. Michael, "High pressure for low emissions: How civil society created the Paris climate agreement", Juncture, 22, 314-323 (2018). https://doi.org/10.1111/j.2050-5876.2016.00881.x
  3. S. H. Kim and C. S. Lee, "A Study on Consumers' Perception and Willingness to Pay for Fruits and Vegetables Using Renewable Energy", Korean J. Org. Agric., 29, 485-505 (2015).
  4. N. L. Panwar, S. C. Kaushik, and S. Kothari, "Role of renewable energy sources in environmental protection: A review", Renew. Sustain. Energy Rev., 15, 1513-1524 (2011). https://doi.org/10.1016/j.rser.2010.11.037
  5. S. H. Kang, S. J. Choi, and J. W. Kim, "Analysis of the world energy status and hydrogen energy technology R&D of foreign countries", Trans. of Korean Hydrogen and New Energy Society, 18, 216-223 (2007).
  6. K. S. Shin, H. R. Choi, and H. C. Lee, "Topic model analysis of research trend on renewable energy", Journal of the korea Academia-Industrial Cooperation Society, 16, 6411-6418 (2015). https://doi.org/10.5762/KAIS.2015.16.9.6411
  7. J. H. Park, C. H. Kin, H. S. Cho, S. K. Kim, and W. C. Cho, "Techno-economic analysis of green hydrogen production system based on renewable energy sources", Trans. of Korean Hydrogen and New Energy Society, 31, 337-344 (2020). https://doi.org/10.7316/KHNES.2020.31.4.337
  8. B, H. Park, "Simulation of temperature behavior in hydrogen tank during refueling using cubic equations of state", Trans. of Korean Hydrogen and New Energy Society, 30, 385-394, (2019).
  9. J. Daechun, "A study on safety policies for a transition to a hydrogen economy", Trans. of Korean Hydrogen and New Energy Society, 25, 161-172 (2014). https://doi.org/10.7316/KHNES.2014.25.2.161
  10. S. K. Ryi, J. Y. Han, C. H. Kim, H. K. Lim, and H. Y. Jung, "Technical trends of hydrogen production", Clean Technol., 23, 121-132 (2017). https://doi.org/10.7464/KSCT.2017.23.2.121
  11. O. S. Joo, "Hydrogen Production Technology", Korean Chem. Eng. Res., 49, 688-696 (2011). https://doi.org/10.9713/kcer.2011.49.6.688
  12. J. Y. Lee, Y. M. Yi, and S. H. Uhm, "Understanding underlying processes of water electrolysis", Appl. Chem. Eng., 19, 357-365 (2008).
  13. Y. C. Bak and K. J. Cho, "Status for the technology of hydrogen production from natural gas", Korean Chem. Eng. Res., 43, 344-351 (2005).
  14. K. M. H. Ali, D. Rahman, N. Peter, H. Nawshad, M. Iain, and A. Rose, "A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation", Int. J. Hydrogen Energy, 46, 22685-22706 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.104
  15. M. Yu, K. Wang, and H. Vredenburg, "Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen", Int. J. Hydrogen Energy, 46, 21261-21273 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.016
  16. W. S. Lee, Y. M. Kim, Y. J. Shin, J. H. Wang, Bryan Moon, H. J. Park, S. J. Chang, and O. K. Kwon, "Role of Blue Hydrogen for Developing National Hydrogen Supply Infrastructure", J. Korean Soc. Miner. Energy Resour. Eng., 58, 503-520 (2021). https://doi.org/10.32390/ksmer.2021.58.5.503
  17. H. E. Lee, D. T. Linh, W. K. Lee, and T. K. Kim, "Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis", Appl. Chem. Eng., 32, 332- 339 (2021). https://doi.org/10.14478/ACE.2021.1043
  18. J. Chi, and H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chin. J. Catal., 39, 390-394 (2018). https://doi.org/10.1016/S1872-2067(17)62949-8
  19. Forst & Sullivan., "Growth Opportunities in Green Hydrogen Production, Hydrogen Fuel Cells and Power-to-X-to-Power", KEPCO Journal, 6, 381-387 (2020).
  20. D. S. Kim, T. I. Yun, M. Y. Seo, H. I. Cho, Y. M. Lee, and S. Y. Nam, "Preparation of ion-exchange membranes for fuel cell based on crosslinked PVA/PSSA_MA/silica hybrid", Desalination, 200, 634-635 (2006). https://doi.org/10.1016/j.desal.2006.03.456
  21. M. S. Kim, J. Y. Ha, Y. T. Kim, and J. S. Choi, "Technology Trends in Stainless Steel for Water Splitting Application", J. Korean Electrochem. Soc., 24, 13-27 (2021). https://doi.org/10.5229/JKES.2021.24.2.13
  22. E. Zoulias, E. Varkaraki, N. Lymberopoulos, Christodolou, N. Christodoulos, Karakgiorigis, and N. George, "A review on water electrolysis", Tcjst, 4, 41-71 (2004).
  23. S. H. Lee, S. W. Lee, S. J. Kim, and T. H. Shin, "Recent advances in high temperature electrolysis cells using LaGaO3-based electrolyte", J. Kor. Ceram. Soc., 24, 424-437 (2021).
  24. K. S. Im, T. Y. Son, H. N. Jeong, D. J. Kwon, and S. Y. Nam, "A research trend on diaphragm membranes alkaline water electrolysis system", Membr. J., 31, 133-144 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.133
  25. S. M. Han, K. S. Im, H. N. Jeong, D. H. Kim, and S. Y Nam, "Preparation and evaluation of hybrid porous membrane for the application of alkaline water electrolysis", Membr. J., 31, 443-455 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.6.443
  26. D. J. Kim, H. Y. Hwang, S. B. Jung, and S. Y. Nam, "Sulfonated poly(arylene ether sulfone)/Laponite-SO3H composite membrane for direct methanol fuel cell", J. Ind. Eng. Chem., 18, 556-562 (2012). https://doi.org/10.1016/j.jiec.2011.11.128
  27. J. H. Lee, W. C. Cho, and C. H. Kim, "Research trend and prospect of membranes for water electrolysis", KIC News, 24, 1-21 (2021).
  28. D. J. Kim and S. Y. Nam, "Research trend of organic/inorganic composite membrane for polymer elevrtolyte membrnae fuel cell", Membr. J, 22, 155-170 (2012).
  29. J. H. Jeong, E. K. Shin, J. J. Jeong, I. C. Na, C. H. Chu, and K. P. Park, "Degradation of electrode and membrane in proton exchange membrane fuel cell after water electrolysis", Korean Chem. Eng. Res., 52, 695-700 (2014). https://doi.org/10.9713/kcer.2014.52.6.695
  30. K. S. Im, T. Y. Son, K. H. Kim, J. F. Kim, and S. Y. Nam, "Research and development trend of electrolyte membrane applicable to water electrolysis system", J. Ind. Eng. Chem., 30, 389-398 (2019).
  31. C. H. Park, T. H. Kim, D. J. Kim, and S. Y. Nam, "Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membrnaes", Iny. J. Hydrog. Energy, 42, 20895-20903 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.146
  32. L. Zeng , T. S. Zhao, L. Wei , H. R. Jiang, and M. C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges", Applied Energy, 233, 622-643 (2019). https://doi.org/10.1016/j.apenergy.2018.10.063
  33. M. S. Shin, D. H. Kim, M. S. Kang, and J. S. Park, "Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells", J. Korean Electrochem. Soc., 19, 107-113 (2016). https://doi.org/10.5229/JKES.2016.19.3.107
  34. L. Zhu, J. Pan, Y. Wang, J. Han, L. Zhuang, and M. A Hickner, "Multication side chain anion exchange membranes", Macromolecules, 49, 815-824, (2016). https://doi.org/10.1021/acs.macromol.5b02671
  35. J. H. Lee, "Research Trend of anion exchange membranes for Water Electrolysis", News & Information for Chemical Engineers, 40, 498-506 (2022).
  36. D. J. Kim, C. H. Park, and S. Y. Nam, "Characterization of a soulble poly (ether ether ketone) anion exchange membrane for fuel cell application", Int. J. Hydrog. Energy, 41, 7649-7658 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.088
  37. T. Y. Son, T. H. Kim, H. J. Kim, and S Y. Nam, "Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC)", Appl. Chem. Eng., 29, 489-496 (2018). https://doi.org/10.14478/ACE.2018.1074
  38. J. H. Lee and J. H. Ryu, "A Simulation Study of Renewable Power based Green Hydrogen Mobility Energy Supply Chain Systems", Korean Chem. Eng. Res., 60, 34-50 (2022).
  39. S. Y. Kim, H. G. Kwon, H. J. Lee, N. G. Jung, B. C. Bae, and D. W. Shin, "Electrochemical method for measurement of hydroxide ion conductivity and co2 poisoning behavior of anion exchange membrane", J. Korean Electrochem. Soc., 25, 88-94 (2022).
  40. Z. Zhao,Y. Li, D. Jin, and B. Van der Bruggen, "Modification of an anion exchange membrane based on rapid mussel-inspired deposition for improved antifouling performance", Colloids Surf. A Physicochem. Eng. Asp., 615, 126267 (2021).
  41. D. Henkensmeier, M. Najibah, C. Harms, J. Zitka, J. Hnat, and K. Bouzek, "Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis", J. Electrochem. Energy Convers. Storage, 18, 024001 1-18 (2021).
  42. V. Sarapulova, I. Shkorkina, S. Mareev, N. Pismenskaya, N. Kononenko, C. Larchet, L. Dammak, and V. Nikonenko, "Transport characteristics of fujifilm ion-exchange membranes as compared to homogeneous membranes AMX and CMX and to heterogeneous membranes MK-40 and MA-41", Membranes, 9, 84 (2019).
  43. J. H. Song, S. G. Yang, W. J. Kim, G. Y. Choi, and B. C. Moon, "Studies on element analysis of the original species, Cryptotympana atrata as a Ciicadidae Periostracum and related species using scanning elecrtron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX)", Korean Herb. Med. Inf., 7, 181-188 (2019). https://doi.org/10.22674/KHMI-7-2-7
  44. R. R. R. Sulaiman, W. Y. Wong, and K. S. Loh, "Recent developments on transition metal-based electrocatalysts for application in anion exchange membrane water electrolysis", Int. J. Energy Res., 46, 2241-2276 (2022). https://doi.org/10.1002/er.7380
  45. V. Vijayakumar, T. Y. Son, H. J. Kim, and S. Y. Nam, "A facile approach to fabricate poly (2, 6-dimethyl-1, 4-phenylene oxide) based anion exchange membranes with extended alkaline stability and ion conductivity for fuel cell applications", J. Membr. Sci., 591, 117314 (2019).
  46. D. J. Kim, B. N. Lee, and S. Y. Nam, "Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell", Int. J. Hydrog. Energy, 42, 23759-23767 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.199
  47. T. Y. Son, D. J. Kim, V. Vijayakumar, K. H. Kim, D. S. Kim, and S. Y. Nam, "Anion exchange membrane using poly (ether ether ketone) containing imidazolium for anion exchange membrane fuel cell (AEMFC)", J. Ind. Eng. Chem., 89, 175-182 (2020). https://doi.org/10.1016/j.jiec.2020.05.009
  48. S. H. Sung, T. S. Mayadevi, J. E. Chae, H. J. Kim, and T. H Kim, "Effect of increasing hydrophilic-hydrophobic block length in quaternary ammonium-functionalized poly (ether sulfone) block copolymer for anion exchange membrane fuel cells", J. Ind. Eng. Chem., 81, 124-134 (2020). https://doi.org/10.1016/j.jiec.2019.08.062
  49. D. M. Chun and S. H. Ahn, "Change of Mechanical Properties of Injection-Molded GlassFiber-Reinforced Plastic(GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction", Trans. Korean Soc. Mech. Eng., 37, 2, 199-204 (2013). https://doi.org/10.3795/KSME-A.2013.37.2.199
  50. A. Z. Al Munsur, I. Hossain, S. Y. Nam, J. E. Chae, and T. H. Kim, ''Hydrophobic-hydrophilic comb-type quaternary ammonium-functionalized SEBS copolymers for high performance anion exchange membranes", J. Membr. Sci., 599, 117829 (2020).
  51. D. J. Kim, C. H. Park, and S. Y. Nam, "Molecular Dynamics simulations of modified PEEK polymeric membrane for fuel cell application", Int. J. Hydrog. Energy, 41, 7641-7648 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.220
  52. Q. Duan, S. Ge, and C. Y. Wang, "Water uptake, ionic conductivity and swelling propertires of anion-exchange membrane", J. Power Source, 243, 773-778 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.095
  53. S. J Oh, "A Study on the Electrochemical Properties of SPEEK/PWA/Silica Composite Membrnaes", Journal of the korea Academia-Industrial Cooperation Society, 14, 2529-2535 (2013). https://doi.org/10.5762/KAIS.2013.14.5.2529