Acknowledgement
이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20015599) 그리고 이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No.2020R1A6A03038697)
References
- K. R. Paik and Y. S. Woo, "Changing climate in our lifetime: A review", J. Korea Water Resour. Assoc., 51, 1045-1056 (2018).
- J. Michael, "High pressure for low emissions: How civil society created the Paris climate agreement", Juncture, 22, 314-323 (2018). https://doi.org/10.1111/j.2050-5876.2016.00881.x
- S. H. Kim and C. S. Lee, "A Study on Consumers' Perception and Willingness to Pay for Fruits and Vegetables Using Renewable Energy", Korean J. Org. Agric., 29, 485-505 (2015).
- N. L. Panwar, S. C. Kaushik, and S. Kothari, "Role of renewable energy sources in environmental protection: A review", Renew. Sustain. Energy Rev., 15, 1513-1524 (2011). https://doi.org/10.1016/j.rser.2010.11.037
- S. H. Kang, S. J. Choi, and J. W. Kim, "Analysis of the world energy status and hydrogen energy technology R&D of foreign countries", Trans. of Korean Hydrogen and New Energy Society, 18, 216-223 (2007).
- K. S. Shin, H. R. Choi, and H. C. Lee, "Topic model analysis of research trend on renewable energy", Journal of the korea Academia-Industrial Cooperation Society, 16, 6411-6418 (2015). https://doi.org/10.5762/KAIS.2015.16.9.6411
- J. H. Park, C. H. Kin, H. S. Cho, S. K. Kim, and W. C. Cho, "Techno-economic analysis of green hydrogen production system based on renewable energy sources", Trans. of Korean Hydrogen and New Energy Society, 31, 337-344 (2020). https://doi.org/10.7316/KHNES.2020.31.4.337
- B, H. Park, "Simulation of temperature behavior in hydrogen tank during refueling using cubic equations of state", Trans. of Korean Hydrogen and New Energy Society, 30, 385-394, (2019).
- J. Daechun, "A study on safety policies for a transition to a hydrogen economy", Trans. of Korean Hydrogen and New Energy Society, 25, 161-172 (2014). https://doi.org/10.7316/KHNES.2014.25.2.161
- S. K. Ryi, J. Y. Han, C. H. Kim, H. K. Lim, and H. Y. Jung, "Technical trends of hydrogen production", Clean Technol., 23, 121-132 (2017). https://doi.org/10.7464/KSCT.2017.23.2.121
- O. S. Joo, "Hydrogen Production Technology", Korean Chem. Eng. Res., 49, 688-696 (2011). https://doi.org/10.9713/kcer.2011.49.6.688
- J. Y. Lee, Y. M. Yi, and S. H. Uhm, "Understanding underlying processes of water electrolysis", Appl. Chem. Eng., 19, 357-365 (2008).
- Y. C. Bak and K. J. Cho, "Status for the technology of hydrogen production from natural gas", Korean Chem. Eng. Res., 43, 344-351 (2005).
- K. M. H. Ali, D. Rahman, N. Peter, H. Nawshad, M. Iain, and A. Rose, "A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation", Int. J. Hydrogen Energy, 46, 22685-22706 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.104
- M. Yu, K. Wang, and H. Vredenburg, "Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen", Int. J. Hydrogen Energy, 46, 21261-21273 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.016
- W. S. Lee, Y. M. Kim, Y. J. Shin, J. H. Wang, Bryan Moon, H. J. Park, S. J. Chang, and O. K. Kwon, "Role of Blue Hydrogen for Developing National Hydrogen Supply Infrastructure", J. Korean Soc. Miner. Energy Resour. Eng., 58, 503-520 (2021). https://doi.org/10.32390/ksmer.2021.58.5.503
- H. E. Lee, D. T. Linh, W. K. Lee, and T. K. Kim, "Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis", Appl. Chem. Eng., 32, 332- 339 (2021). https://doi.org/10.14478/ACE.2021.1043
- J. Chi, and H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chin. J. Catal., 39, 390-394 (2018). https://doi.org/10.1016/S1872-2067(17)62949-8
- Forst & Sullivan., "Growth Opportunities in Green Hydrogen Production, Hydrogen Fuel Cells and Power-to-X-to-Power", KEPCO Journal, 6, 381-387 (2020).
- D. S. Kim, T. I. Yun, M. Y. Seo, H. I. Cho, Y. M. Lee, and S. Y. Nam, "Preparation of ion-exchange membranes for fuel cell based on crosslinked PVA/PSSA_MA/silica hybrid", Desalination, 200, 634-635 (2006). https://doi.org/10.1016/j.desal.2006.03.456
- M. S. Kim, J. Y. Ha, Y. T. Kim, and J. S. Choi, "Technology Trends in Stainless Steel for Water Splitting Application", J. Korean Electrochem. Soc., 24, 13-27 (2021). https://doi.org/10.5229/JKES.2021.24.2.13
- E. Zoulias, E. Varkaraki, N. Lymberopoulos, Christodolou, N. Christodoulos, Karakgiorigis, and N. George, "A review on water electrolysis", Tcjst, 4, 41-71 (2004).
- S. H. Lee, S. W. Lee, S. J. Kim, and T. H. Shin, "Recent advances in high temperature electrolysis cells using LaGaO3-based electrolyte", J. Kor. Ceram. Soc., 24, 424-437 (2021).
- K. S. Im, T. Y. Son, H. N. Jeong, D. J. Kwon, and S. Y. Nam, "A research trend on diaphragm membranes alkaline water electrolysis system", Membr. J., 31, 133-144 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.133
- S. M. Han, K. S. Im, H. N. Jeong, D. H. Kim, and S. Y Nam, "Preparation and evaluation of hybrid porous membrane for the application of alkaline water electrolysis", Membr. J., 31, 443-455 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.6.443
- D. J. Kim, H. Y. Hwang, S. B. Jung, and S. Y. Nam, "Sulfonated poly(arylene ether sulfone)/Laponite-SO3H composite membrane for direct methanol fuel cell", J. Ind. Eng. Chem., 18, 556-562 (2012). https://doi.org/10.1016/j.jiec.2011.11.128
- J. H. Lee, W. C. Cho, and C. H. Kim, "Research trend and prospect of membranes for water electrolysis", KIC News, 24, 1-21 (2021).
- D. J. Kim and S. Y. Nam, "Research trend of organic/inorganic composite membrane for polymer elevrtolyte membrnae fuel cell", Membr. J, 22, 155-170 (2012).
- J. H. Jeong, E. K. Shin, J. J. Jeong, I. C. Na, C. H. Chu, and K. P. Park, "Degradation of electrode and membrane in proton exchange membrane fuel cell after water electrolysis", Korean Chem. Eng. Res., 52, 695-700 (2014). https://doi.org/10.9713/kcer.2014.52.6.695
- K. S. Im, T. Y. Son, K. H. Kim, J. F. Kim, and S. Y. Nam, "Research and development trend of electrolyte membrane applicable to water electrolysis system", J. Ind. Eng. Chem., 30, 389-398 (2019).
- C. H. Park, T. H. Kim, D. J. Kim, and S. Y. Nam, "Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membrnaes", Iny. J. Hydrog. Energy, 42, 20895-20903 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.146
- L. Zeng , T. S. Zhao, L. Wei , H. R. Jiang, and M. C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges", Applied Energy, 233, 622-643 (2019). https://doi.org/10.1016/j.apenergy.2018.10.063
- M. S. Shin, D. H. Kim, M. S. Kang, and J. S. Park, "Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells", J. Korean Electrochem. Soc., 19, 107-113 (2016). https://doi.org/10.5229/JKES.2016.19.3.107
- L. Zhu, J. Pan, Y. Wang, J. Han, L. Zhuang, and M. A Hickner, "Multication side chain anion exchange membranes", Macromolecules, 49, 815-824, (2016). https://doi.org/10.1021/acs.macromol.5b02671
- J. H. Lee, "Research Trend of anion exchange membranes for Water Electrolysis", News & Information for Chemical Engineers, 40, 498-506 (2022).
- D. J. Kim, C. H. Park, and S. Y. Nam, "Characterization of a soulble poly (ether ether ketone) anion exchange membrane for fuel cell application", Int. J. Hydrog. Energy, 41, 7649-7658 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.088
- T. Y. Son, T. H. Kim, H. J. Kim, and S Y. Nam, "Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC)", Appl. Chem. Eng., 29, 489-496 (2018). https://doi.org/10.14478/ACE.2018.1074
- J. H. Lee and J. H. Ryu, "A Simulation Study of Renewable Power based Green Hydrogen Mobility Energy Supply Chain Systems", Korean Chem. Eng. Res., 60, 34-50 (2022).
- S. Y. Kim, H. G. Kwon, H. J. Lee, N. G. Jung, B. C. Bae, and D. W. Shin, "Electrochemical method for measurement of hydroxide ion conductivity and co2 poisoning behavior of anion exchange membrane", J. Korean Electrochem. Soc., 25, 88-94 (2022).
- Z. Zhao,Y. Li, D. Jin, and B. Van der Bruggen, "Modification of an anion exchange membrane based on rapid mussel-inspired deposition for improved antifouling performance", Colloids Surf. A Physicochem. Eng. Asp., 615, 126267 (2021).
- D. Henkensmeier, M. Najibah, C. Harms, J. Zitka, J. Hnat, and K. Bouzek, "Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis", J. Electrochem. Energy Convers. Storage, 18, 024001 1-18 (2021).
- V. Sarapulova, I. Shkorkina, S. Mareev, N. Pismenskaya, N. Kononenko, C. Larchet, L. Dammak, and V. Nikonenko, "Transport characteristics of fujifilm ion-exchange membranes as compared to homogeneous membranes AMX and CMX and to heterogeneous membranes MK-40 and MA-41", Membranes, 9, 84 (2019).
- J. H. Song, S. G. Yang, W. J. Kim, G. Y. Choi, and B. C. Moon, "Studies on element analysis of the original species, Cryptotympana atrata as a Ciicadidae Periostracum and related species using scanning elecrtron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX)", Korean Herb. Med. Inf., 7, 181-188 (2019). https://doi.org/10.22674/KHMI-7-2-7
- R. R. R. Sulaiman, W. Y. Wong, and K. S. Loh, "Recent developments on transition metal-based electrocatalysts for application in anion exchange membrane water electrolysis", Int. J. Energy Res., 46, 2241-2276 (2022). https://doi.org/10.1002/er.7380
- V. Vijayakumar, T. Y. Son, H. J. Kim, and S. Y. Nam, "A facile approach to fabricate poly (2, 6-dimethyl-1, 4-phenylene oxide) based anion exchange membranes with extended alkaline stability and ion conductivity for fuel cell applications", J. Membr. Sci., 591, 117314 (2019).
- D. J. Kim, B. N. Lee, and S. Y. Nam, "Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell", Int. J. Hydrog. Energy, 42, 23759-23767 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.199
- T. Y. Son, D. J. Kim, V. Vijayakumar, K. H. Kim, D. S. Kim, and S. Y. Nam, "Anion exchange membrane using poly (ether ether ketone) containing imidazolium for anion exchange membrane fuel cell (AEMFC)", J. Ind. Eng. Chem., 89, 175-182 (2020). https://doi.org/10.1016/j.jiec.2020.05.009
- S. H. Sung, T. S. Mayadevi, J. E. Chae, H. J. Kim, and T. H Kim, "Effect of increasing hydrophilic-hydrophobic block length in quaternary ammonium-functionalized poly (ether sulfone) block copolymer for anion exchange membrane fuel cells", J. Ind. Eng. Chem., 81, 124-134 (2020). https://doi.org/10.1016/j.jiec.2019.08.062
- D. M. Chun and S. H. Ahn, "Change of Mechanical Properties of Injection-Molded GlassFiber-Reinforced Plastic(GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction", Trans. Korean Soc. Mech. Eng., 37, 2, 199-204 (2013). https://doi.org/10.3795/KSME-A.2013.37.2.199
- A. Z. Al Munsur, I. Hossain, S. Y. Nam, J. E. Chae, and T. H. Kim, ''Hydrophobic-hydrophilic comb-type quaternary ammonium-functionalized SEBS copolymers for high performance anion exchange membranes", J. Membr. Sci., 599, 117829 (2020).
- D. J. Kim, C. H. Park, and S. Y. Nam, "Molecular Dynamics simulations of modified PEEK polymeric membrane for fuel cell application", Int. J. Hydrog. Energy, 41, 7641-7648 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.220
- Q. Duan, S. Ge, and C. Y. Wang, "Water uptake, ionic conductivity and swelling propertires of anion-exchange membrane", J. Power Source, 243, 773-778 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.095
- S. J Oh, "A Study on the Electrochemical Properties of SPEEK/PWA/Silica Composite Membrnaes", Journal of the korea Academia-Industrial Cooperation Society, 14, 2529-2535 (2013). https://doi.org/10.5762/KAIS.2013.14.5.2529