DOI QR코드

DOI QR Code

Persistence Analysis of Observed Metocean Data in the Southwest Coast in Korea

서남해안 연안 해양기상 관측자료의 지속시간 특성 분석

  • Gi-Seop, Lee (Marine Bigdata Center, Korea Institute of Ocean Science and Technology) ;
  • Gyung-Sik, Seo (Hyein Engineering & Construction) ;
  • Hong-Yeon, Cho (Marine Bigdata Center, Korea Institute of Ocean Science and Technology)
  • 이기섭 (한국해양과학기술원 해양빅데이터센터) ;
  • 서경식 ((주)혜인이엔씨) ;
  • 조홍연 (한국해양과학기술원 해양빅데이터센터)
  • Received : 2022.11.18
  • Accepted : 2022.12.16
  • Published : 2022.12.31

Abstract

The persistence analysis of marine physical environment factors is a basic analysis that must precede the use of sea areas as an analysis required in the coastal engineering such as downtime and design. In this study, the persistence analysis was implemented for wind speed and significant wave height data from four observation points of Deokjeokdo, Oeyeondo, Geomundo, and Geojedo among the marine meteorological observation buoys of the Korea Meteorological Administration. The persistence time means the consecutive time of observation data beyond specific level. The threshold wind speed and significant wave height were set in the range of 1~15 m/s and the range of 0.25~3.0 m, respectively. Then, the persistence time was extracted. As a result of the analysis, the persistence time of wind speed and significant wave height decreased rapidly as the reference value increased. The median persistence times under the maximum reference thresholds were assessed as a maximum of 5 hours for wind speed and a maximum of 8 hours for significant wave height. When the reference wind speed and significant wave height were 15 m/s and 3 m, respectively, the persistence time that could occur with a 1% probability were 52 and 56 hours. This study can be expanded to all coastal areas in Korea, and it is expected that various engineering applications by performing a persistence analysis of the metocean data.

해양 물리 환경 인자의 지속시간 분석은 작업시간, 설계와 같은 해안공학적 관점에서 요구되는 분석으로 해역 이용에 필수로 선행되어야하는 기초 분석이다. 본 연구에서는 기상청 해양기상관측부이 중 우리나라 서남해안 4개 관측 지점(덕적도, 외연도, 거문도, 거제도)의 풍속 및 유의파고 자료의 지속시간 분석을 수행하였다. 기준풍속은 1~15 m/s, 기준유의파고는 0.25~3.0 m의 범위를 설정하고 관측자료가 이를 넘어서 지속되는 시간을 산정했다. 분석결과, 풍속과 유의파고의 지속시간은 기준값이 높아질수록 급격히 감소했으며, 최대 기준 조건에서 지속시간의 중간값은 풍속이 최대 5시간, 유의파고는 최대 8시간으로 계산되었다. 1% 미만의 확률로 발생하는 지속시간은 기준풍속이 15 m/s일 때 최대 52시간, 기준유의파고가 3m일 때 최대 56시간으로 나타났다. 향후 우리나라 전 해역을 대상으로 해양기상 자료의 지속시간 분석을 수행할 수 있으며, 다양한 공학적 활용이 기대된다.

Keywords

Acknowledgement

본 연구는 심해저광업 잔사물질 특성규명 및 환경친화적 저감/처리기술 연구(PEA0023)와 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. RS-2022-00144325). 연구 지원에 감사드립니다. 해양기상관측부이 자료를 제공해주신 기상청에 감사드립니다.

References

  1. Acuna, E. and Rodriguez, C. (2004). The treatment of missing values and its effect on classifier accuracy. In Classification, clustering, and data mining applications. Springer, Berlin, Heidelberg, 639-647.
  2. Bruijn, W.E., Rip, J., Hendriks, A.J., van Gelder, P.H. and Jonkman, S.N. (2019). Probabilistic downtime estimation for sequential marine operations. Applied Ocean Research, 86, 257-267. https://doi.org/10.1016/j.apor.2019.02.014
  3. Chakrabarti, S. (2005). Ocean environment. In Handbook of Offshore Engineering, Ocean Engineering Series. vol. 1, Elsevier, 79-131.
  4. Cho, H.Y., Jeong, W.M., Baek, W.D. and Kim, S.I. (2012). Analysis of the variation pattern of the wave climate in the Sokcho coastal zone. Journal of Korean Society of Coastal and Ocean Engineers, 24(2), 120-127 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.2.120
  5. Cieslikiewicz, W. and Paplinska-Swerpel, B. (2008). A 44-year hindcast of wind wave fields over the Baltic Sea. Coastal Engineering, 55, 894-905. https://doi.org/10.1016/j.coastaleng.2008.02.017
  6. Feng, X., Tsimplis, M.N., Quartly, G.D. and Yelland, M.J. (2014). Wave height analysis from 10 years of observations in the Norwegian Sea. Continental Shelf Research, 72, 47-56. https://doi.org/10.1016/j.csr.2013.10.013
  7. Global Wind Energy Council. (2020). GWEC Global Wind Report 2019. Global Wind Energy Council: Brussels, Belgium.
  8. Graham, C. (1982). The parameterisation and prediction of wave height and wind speed persistence statistics for oil industry operational planning purposes. Coastal Engineering, 6(4), 303-329. https://doi.org/10.1016/0378-3839(82)90005-9
  9. Hyndman, R.J. and Fan, Y. (1996). Sample quantiles in statistical packages. American Statistician, 50, 361-365.  https://doi.org/10.2307/2684934
  10. Ingram, D., Smith, G., Bittencourt-Ferreira, C. and Smith, H. (2011). EquiMar: Protocols for the Equitable Assessment of Marine Energy Converters (No. 213380).
  11. Jager, W.S., Nagler, T., Czado, C. and McCall, R.T. (2019). A statistical simulation method for joint time series of non-stationary hourly wave parameters. Coastal Engineering, 146, 14-31. https://doi.org/10.1016/j.coastaleng.2018.11.003
  12. Jeong, C.K., Valsaraj, A. and Velazquez, H. (2015). Global wave persistence study for offshore operation and planning. In International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, 56475, V001T01A013.
  13. Jeong, W.M., Oh, S.H., Ryu, K.H., Back, J.D. and Choi, I.H. (2018). Establishment of Wave Information Network of Korea (WINK). Journal of Korean Society of Coastal and Ocean Engineers, 30(6), 326-336 (in Korean). https://doi.org/10.9765/KSCOE.2018.30.6.326
  14. Korea Meteorological Administration (KMA). (2022). MONTHLY REPORT OF MARINE DATA. (Publication Number 11- 1360000-000817-06).
  15. Kim, J.G., Kang, B. and Yoon, B. (2014). Analysis of intensityduration-quantity (IDQ) curve for designing flood retention basin. Journal of Korea Water Resources Association, 47(1), 83- 93 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.1.83
  16. Kim, Y.K., Song, S.K. and Kang, J.E. (2004). Characteristics of concentration variations and synoptic conditions by the lasting time of asian dust. Journal of Korean Society for Atmospheric Environment, 20(4), 465-481 (in Korean).
  17. Kuwashima, S. and Hogben, N. (1986). The estimation of wave height and wind speed persistence statistics from cumulative probability distributions. Coastal Engineering, 9(6), 563-590. https://doi.org/10.1016/0378-3839(86)90004-9
  18. Lavidas, G. and Kamranzad, B. (2021). Assessment of wave power stability and classification with two global datasets. International Journal of Sustainable Energy, 40(6), 514-529. https://doi.org/10.1080/14786451.2020.1821027
  19. Lavidas, G., Venugopal, V. and Friedrich, D. (2017). Wave energy extraction in scotland through an improved nearshore wave atlas. International Journal of Marine Energy, 17, 64-83. https://doi.org/10.1016/j.ijome.2017.01.008
  20. McDowell, J., Jeffcoate, P., Bruce, T. and Johanning, L. (2018). Numerically Modelling the Spatial Distribution of Weather Windows: Improving the Site Selection Methodology for Floating Tidal Platforms. In Proc 4th Asian Wave Tidal Energy Conf.. Taipei, Taiwan.
  21. Millar, D.L., Smith, H.C.M. and Reeve, D.E. (2006). Modeling analysis of the sensitivity of shoreline change to a wave farm. Ocean Engineering, 34(5-6), 884-901. https://doi.org/10.1016/j.oceaneng.2005.12.014
  22. Ministry of Oceans and Fisheries (MOF). (2021). Plans to strengthen port safety management. p. 302.
  23. Nunez, P., Garcia, A., Mazarrasa, I., Juanes, J.A., Abascal, A.J., Mendez, F., Castanedo, S. and Medina, R. (2019). A methodology to assess the probability of marine litter accumulation in estuaries. Marine Pollution Bulletin, 144, 309-324. https://doi.org/10.1016/j.marpolbul.2019.04.077
  24. Panchang, V.G., Jeong, C.K. and Demirbilek, Z. (2013). Analyses of extreme wave heights in the gulf of mexico for offshore engineering applications. Journal of Offshore Mechanics and Arctic Engineering, 135, 031104.
  25. Panchang, V.G., Jeong, C.K. and Li, D. (2008). Wave climatology in coastal maine for aquaculture and other applications. Estuaries and Coasts, 31(2), 289-299. https://doi.org/10.1007/s12237-007-9016-5
  26. Pontes, M.T., Aguiar, R. and Oliverira, P.H. (2005). A Nearshore wave energy atlas for portugal. J. Offshore Mechanics and Arctic Engineering, 127, 249-255. https://doi.org/10.1115/1.1951779
  27. Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.T., Chuang, H.Y., Juang, H.M.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G. and Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015-1058.
  28. Smith, H. and Maisondieu, C. (2014). Resource Assessment for Cornwall, Isles of Scilly and PNMI (Tech. Rep. No. April), Task 1.2 of WP3 from the MERiFIC Project, A report prepared as part of the MERiFIC Project "Marine Energy in Far Peripheral and Island Communities".
  29. Sobey, R.J. and Orloff, L.S. (1999). Intensity-duration-frequency summaries for wave climate. Coastal Engineering, 36(1), 37-58. https://doi.org/10.1016/S0378-3839(98)00048-9
  30. World Bank. (2010). Best Practice Guidelines for Mesoscale Wind Mapping Projects for the World Bank (Tech. Rep.). World Bank. https://www.esmap.org/sites/esmap.org/files/MesodocwithWBlogo.pdf.
  31. World Meteorological Organization. (2017). WMO Guidelines on the Calculation of Climate Normals (Tech. Rep.). World Meteorological Organization. https://library.wmo.int/doc-num.php?explnum-id=4166.