DOI QR코드

DOI QR Code

Hydrodynamic Response Analysis of Hybrid Floating Structure according to Length of Damping Plate

수평감쇠판 길이에 따른 하이브리드 부유식 구조물의 거동 특성 분석

  • Min Su, Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Youn Ju, Jeong (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Young Taek, Kim (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 박민수 (한국건설기술연구원 구조연구본부) ;
  • 정연주 (한국건설기술연구원 구조연구본부) ;
  • 김영택 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2022.11.06
  • Accepted : 2022.12.13
  • Published : 2022.12.31

Abstract

New businesses such as marine leisure and floating construction have recently flourished on the coast. As a result, consideration is given to a floating structure appropriate for marine environments. In this study, we applied a damping plate to increase the stability of a hybrid floating structure that was expanded by vertical and horizontal stacking of mobile unit modules. In the numerical analysis using ANSYS AQWA, the behavioral characteristics of the floating structure were analyzed according to the length change of the damping plate. However, the wave forces acting on a floating structure are excessively calculated by the resonance of fluid surrounded by the structure in the numerical analysis using potential flow. Therefore, we used the damping zone option of the ANSYS AQWA in the frequency domain analysis.

최근 연안에서 해상관광레저, 플로팅 건축 등의 사업발굴이 활발히 진행 중에 있어 해상조건에 적합한 부유식 구조물의 필요성이 대두되고 있다. 본 연구에서는 육상 이동이 가능한 단위 모듈의 수직 및 수평 적층으로 확장된 하이브리드 부유식 구조물의 안정성을 향상시키기 위해 수평감쇠판을 적용하였다. 적용된 수평감쇠판의 길이 변화에 따른 하이브리드 부유식 구조물의 거동 특성을 상용 프로그램인 ANSYS AQWA를 이용하여 분석하였다. 하지만 제안된 하이브리드 부유식 구조물의 경우 구조물에 의해 둘러싸인 유체영역이 존재하고 이로 인해 특정 주기에서 공진이 발생할 가능성이 있다. 따라서 구조물에 의해 둘러싸인 유체영역에 ANSYS AQWA에서 제공되는 감쇠존 효과를 고려하여 부유식 구조물의 거동 특성을 주파수 영역 수치해석을 통해 면밀하게 분석하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업(과제번호 20220316-001, 하이브리드 부유체의 해상 적용성 확장을 위한 모듈연결 및 자세안정성 향상 기술개발(1/2))으로 수행된 연구결과 중 일부임을 밝히며, 연구비 지원에 감사드립니다.

References

  1. Bezunartea-Barrio, A., Fernandez-Ruano, S., Maron-Loureiro, A., Molinelli-Fernandez, E., Moreno-Buron, F., Oria-Escudero, J., Rios-Tubio, J., Soriano-Gomez, C., Valea-Peces, A., Lopez-Pavon, C. and Antonio Souto-Iglesias, A. (2020). Scale effects on heave plates for semi submersible floating offshore wind turbines: Case study with a solid plain plate. Journal of Offshore Mechanics and Arctic Engineering, 142(3), 1-9.
  2. Bunnik, T., Pauw, W. and Voogt, A. (2009). Hydrodynamic analysis for side by side offloading, In 19th International Offshore and Polar Engineering Conference, Osaka, Japan.
  3. Cheetham, P., Du, S., May, R. and Smith, S. (2007). Hydrodynamic analysis of ships side by side in waves, International Aerospace CFD Conference, Paris, France.
  4. Chen, M., Guo, H., Wang, R., Tao, R. and Cheng, N. (2021). Effect of gap resonance on the hydrodynamics and dynamics of a multi-module floating system with narrow gaps. Journal of Marine Science and Engineering, 9(11), 1-29. https://doi.org/10.3126/jsce.v9i9.46289
  5. Chen, X.B. (2005). Hydrodynamic analysis for fffshore LNG terminals, Proceeding of the 2nd International Workshop on Applied Offshore Hydrodynamics, Rio De Janeiro, Brazil.
  6. Chen, Z.J., Wang, Y.X., Dong, H.Y. and Zheng, B.X. (2012). Time-domain hydrodynamic analysis of pontoon plate floating breakwater. Water Science and Engineering, 5(3), 291-303. https://doi.org/10.3882/j.issn.1674-2370.2012.03.005
  7. Fournier, J.R., Naciri, M. and Chen, X.B. (2006). Hydrodynamics of two side by side vessels experiments and numerical simulations, In 16th International Offshore and Polar Engineering Conference, San Francisco, California, USA.
  8. Ganesan T, S. and Sen, D. (2016). Time domain simulation of side by side floating bodies using A 3D numerical wave tank approach. Applied Ocean Research, 58, 189-217. https://doi.org/10.1016/j.apor.2016.03.014
  9. Jiang, Y., Hu, G., Zong, Z., Zou, L. and Jin, G. (2022). Influence of an integral heave plate on the dynamic response of floating offshore wind turbine under operational and storm conditions. Energies, 13, 1-18. https://doi.org/10.3390/en13010001
  10. Koh, H.J. and Cho, I.H. (2016). Heave motion response of a circular cylinder with the dual damping plates. Ocean Engineering, 125, 95-102. https://doi.org/10.1016/j.oceaneng.2016.07.037
  11. Lee, H.J., Kim, D.S. and Shin M.S. (2013). A study on tranquility by the development of new type floating breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 25(3), 154-164 (in Korean). https://doi.org/10.9765/KSCOE.2013.25.3.154
  12. Lim, G.N., Kim, S.H. and Kim, D.Y. (2015). A numerical study on the appendage shape for a heave motion reduction of floating cylinder structure. Journal of the Korean Society of Marine Environment & Safety, 21(4), 449-456 (in Korean). https://doi.org/10.7837/kosomes.2015.21.4.449
  13. Lopez-Pavon, C. and Souto-Iglesias, A. (2015). Hydrodynamic coefficients and pressure loads on heave plates for semi submersible floating offshore wind turbines: A Comparative analysis using large scale models. Renewable Energy, 81, 864-881. https://doi.org/10.1016/j.renene.2015.04.003
  14. Park, M.S., Kim, Y.T., Park, S. and Min, J. (2022). Interaction analysis between wave and caissons by damping zone effect for installing new caisson on old caisson breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 34(5), 156-168 (in Korean). https://doi.org/10.9765/KSCOE.2022.34.5.156
  15. Park, S., Kim, K.H. and Hong, K. (2018). Conceptual design of motion reduction device for floating wave-offshore wind hybrid power generation platform. Jouranl of Ocean Engineering and Technology, 32(1), 9-20 (in Korean). https://doi.org/10.26748/KSOE.2018.2.32.1.009
  16. Pauw, W.H., Huijsmans, R.H.M. and Voogt, A. (2007). Advances in the hydrodynamics of side by side moored vessels, In 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, 597-603.
  17. Watai, R., Dinoi, P., Ruggeri, F., Souto-Iglesias. and Simos, A. (2015). Rankine time domain method with application to side by side gap flow modeling. Applied Ocean Research, 50, 69-90. https://doi.org/10.1016/j.apor.2014.12.002