DOI QR코드

DOI QR Code

Comparative Analysis of Forecasting Accuracy and Model Performance for Development of Coastal Wave Forecasting System Based on Unstructured Grid

비정형격자 기반 국지연안 파랑예측시스템 구축을 위한 예측정확도 및 모델성능 비교분석

  • Min, Roh (Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Sang Myeong, Oh (Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Pil-Hun, Chang (Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Hyun-Suk, Kang (Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Hyung Suk, Kim (Department of Civil Engineering, Kunsan National University)
  • 노민 (국립기상과학원 예보연구부) ;
  • 오상명 (국립기상과학원 예보연구부) ;
  • 장필훈 (국립기상과학원 예보연구부) ;
  • 강현석 (국립기상과학원 예보연구부) ;
  • 김형석 (군산대학교 토목공학과)
  • Received : 2022.10.28
  • Accepted : 2022.11.21
  • Published : 2022.12.31

Abstract

We develop a coastal wave forecasting system by using the unstructured grid based on sea wind data of Global Data Assimilation and Prediction System. The verification is performed to examine the performance and accuracy of the wave model. Since the conventional grid has limited wave forecasting on complex coastlines and bathymetry, the unstructured grid system is applied for precise numerical simulation, and applicability for operational support is evaluated. Both grid systems show similar prediction trends in offshore and coastal areas, and the difference in prediction errors according to the grid system is not large. In addition, the applicability of the operational wave forecasting system is confirmed by dramatically reducing the model execution time of the unstructured grid under the same conditions.

전지구수치예보모델의 해상풍 예측자료를 기반으로 비정형격자의 국지연안 파랑예측시스템을 구축하고, 파랑모델의 수행성능 및 예측성능을 검증하였다. 기존의 정형격자는 복잡한 해안선과 연안지형에서의 파랑예측이 제한적이기 때문에 정밀한 국지연안 수치모의를 위해 비정형격자체계를 적용하고, 현업 예보 지원에 대한 적용가능성을 검토하였다. 두 격자체계 모두 근해와 연안에서 유사한 예측경향을 보였고, 격자체계에 따른 예측오차의 차이도 크지 않았다. 또한 정형격자와 비교하여, 비정형격자의 모델수행시간이 동일한 조건에서 현저히 감소하는 것을 통해 비정형격자 기반 파랑예측시스템의 현업 예보 지원에 대한 적용가능성을 확인하였다.

Keywords

Acknowledgement

본 연구는 기상청 국립기상과학원 「해양기상감시 및 차세대 해양예측시스템 개발」(KMA2018-00420)과 국토교통부/국토교통과학기술진흥원(21DPSC-C163249-01)의 지원으로 수행되었습니다.

References

  1. Abdolali, A., Roland, A., Van Der Westhuysen, A., Meixner, J., Chawla, A., Hesser, T.J., Smith, J.M. and Sikiric, M.D. (2020). Large-scale hurricane modeling using domain decomposition parallelization and implicit scheme implemented in WAVEWATCH III wave model. Coast. Eng., 157, 103656. 
  2. Allahdadi, M.N., Gunawan, B., Lai, J., He, R. and Neary, V.S. (2019). Development and validation of a regional-scale highresolution unstructured model for wave energy resource characterization along the US East Coast. Renew. Energy, 136, 500-511.  https://doi.org/10.1016/j.renene.2019.01.020
  3. Amrutha, M.M., Kumar, V.S., Sandhya, K.G., Nair, T.B. and Rathod, J.L. (2016). Wave hindcast studies using SWAN nested in WAVEWATCH III-comparison with measured nearshore buoy data off Karwar, eastern Arabian Sea. Ocean Eng., 119, 114-124.  https://doi.org/10.1016/j.oceaneng.2016.04.032
  4. Ardhuin, F., Rogers, E., Babanin, A., Filipot, J.F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.M., Aouf, L. and Collard, F. (2010). Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration and validation. J. Phys. Oceanogr., 40(9), 1917-1941.  https://doi.org/10.1175/2010JPO4324.1
  5. Bakhtyar, R., Maitaria, K., Velissariou, P., Trimble, B., Mashriqui, H., Moghimi, S., Abdolali, A., Van Der Westhuysen, A.J., Ma, Z., Clark, E.P. and Flowers, T. (2020). A new 1D/2D coupled modeling approach for a riverine-estuarine system under storm events: Application to Delaware River Basin. J. Geophys. Res. Oceans, 125, e2019JC015822. 
  6. Brus, S.R., Wolfram, P.J., Van Roekel, L.P. and Meixner, J.D. (2021). Unstructured global to coastal wave modeling for the Energy Exascale Earth System Model using WAVEWATCH III version 6.07. Geosci. Model Dev., 14(5), 2917-2938.  https://doi.org/10.5194/gmd-14-2917-2021
  7. Chen, S.S., Zhao, W., Donelan, M.A. and Tolman, H.L. (2013). Directinal wind-wave coupling in fully coupled atmospherewave-ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70(10), 3198-3215.  https://doi.org/10.1175/JAS-D-12-0157.1
  8. Do, K.-D. and Kim, J.-A. (2018). A study on the predictability of eastern winter storm waves using operational wind forecasts of KMA. J. Korean Soc. Coast. Ocean Eng., 30(5), 223-233 (in Korean).  https://doi.org/10.9765/KSCOE.2018.30.5.223
  9. Fan, Y., Lin, S.J., Held, I.M., Yu, Z. and Tolman, H.L. (2012). Global ocean surface wave simulation using a coupled atmosphere-wave model. J. Clim., 25(18), 6233-6252.  https://doi.org/10.1175/JCLI-D-11-00621.1
  10. Li, J.-G. (2012). Propagation of ocean surface waves on a spherical multiple-cell grid. J. Comput. Phys., 231(24), 8262-8277.  https://doi.org/10.1016/j.jcp.2012.08.007
  11. Li, J.-G. (2022). Hybrid multi-grid parallelisation of WAVEWATCH III model on spherical multiple-cell grids. J. Parallel Distrib. Comput., 167, 187-198. 
  12. Lira-Loarca, A., Caceres-Euse, A., De-Leo, F. and Besio, G. (2022). Wave modeling with unstructured mesh for hindcast, forecast and wave hazard applications in the Mediterranean Sea. Applied Ocean Research, 122, 103118. 
  13. Liu, Q., Rogers, W.E., Babanin, A.V., Young, I.R., Romero, L., Zieger, S., Qiao, F. and Guan, C. (2019). Observation-based source terms in the third-generation wave model WAVEWATCH III: Updates and verification. J. Phys. Oceanogr., 49(2), 489-517.  https://doi.org/10.1175/JPO-D-18-0137.1
  14. Mentaschi, L., Vousdoukas, M., Montblanc, T.F., Kakoulaki, G., Voukouvalas, E., Besio, G. and Salamon, P. (2020). Assessment of global wave models on regular and unstructured grids using the Unresolved Obstacles Source Term. Ocean Dynamics, 70(11), 1475-1483.  https://doi.org/10.1007/s10236-020-01410-3
  15. Moghimi, S., Van der Westhuysen, A., Abdolali, A., Myers, E., Vinogradov, S., Ma, Z., Liu, F., Mehra, A. and Kurkowski, N. (2020). Development of an ESMF based flexible coupling application of ADCIRC and WAVEWATCH III for high fidelity coastal inundation studies. J. Mar. Sci. Eng., 8(5), 308. 
  16. Park, J.S. and Kang, K.-R. (2012). Sensitivity analysis of Global wind-wave model. J. Korean Soc. Coast. Ocean Eng., 24(5), 333-342 (in Korean).  https://doi.org/10.9765/KSCOE.2012.24.5.333
  17. Rogers, W.E., Babanin, A.V. and Wang, D.W. (2012). Observationconsistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. J. Atmos. Ocean. Technol., 29(9), 1329-1346.  https://doi.org/10.1175/JTECH-D-11-00092.1
  18. Roh, M., Oh, S.M., Kang, K.-R. and Chang, P.-H. (2020). Development and verification of a rapid refresh wave forecasting system. J. Korean Soc. Coast. Ocean Eng., 32(5), 340-350 (in Korean).  https://doi.org/10.9765/KSCOE.2020.32.5.340
  19. Roland, A., Zhang, Y.J., Wang, H.V., Meng, Y., Teng, Y.C., Maderich, V., Brovchenko, I., Dutour-Sikiric, M. and Zanke, U. (2012). A fully coupled 3D wave-current interaction model on unstructured grids. J. Geophys. Res. Oceans, 117(C11), C00J33. 
  20. Theurich, G., DeLuca, C., Campbell, T., Liu, F., Saint, K., Vertenstein, M., Chen, J., Oehmke, R., Doyle, J., Whitcomb, T., Wallcraft, A., Iredell, M., Black, T., Da Silva, A.M., Clune, T., Ferraro, R., Li, P., Kelley, M., Aleinov, I., Balaji, V., Zadeh, N., Jacob, R., Kirtman, B., Giraldo, F., McCarren, D., Sandgathe, S., Peckham, S. and Dunlap IV, R. (2016). The earth system prediction suite: Toward a coordinated US modeling capability. Bull. Am. Meteorol. Soc., 97(7), 1229-1247.  https://doi.org/10.1175/BAMS-D-14-00164.1
  21. Tolman, H.L. (2002). Distributed-memory concepts in the wave model WAVEWATCH III. Parallel Comput., 28(1), 35-52.  https://doi.org/10.1016/S0167-8191(01)00130-2
  22. Tozer, B., Sandwell, D.T., Smith, W.H., Olson, C., Beale, J.R. and Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10), 1847-1864.  https://doi.org/10.1029/2019ea000658
  23. WAVEWATCH III Development Group (2019). User Manual and System Documentation of WAVEWATCH III Version 6.07. Techn., 250. 
  24. Zheng, Z., Ma, X., Huang, X., Ma, Y. and Dong, G. (2022). Wave forecasting within a port using WAVEWATCH III and artificial neural networks. Ocean Eng., 255, 111475. 
  25. Zieger, S., Babanin, A.V., Rogers, W.E. and Young, I.R. (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Model., 96(1), 2-25.  https://doi.org/10.1016/j.ocemod.2015.07.014