DOI QR코드

DOI QR Code

A Review on "Kidney" Functional System in Korean Medicine : From the Perspective of Molecular Physiology

한의학 신(腎) 기능계에 관한 분자생리학적 고찰

  • Miso S., Park (Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University) ;
  • Junghyo, Cho (Department of Hepatology and Hematology of Korean Medicine, College of Korean Medicine, Daejeon University) ;
  • Wangjung, Hur (Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University) ;
  • Horyong, Yoo (Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University)
  • 박미소 (대전대학교 대전한방병원 임상시험센터) ;
  • 조정효 (대전대학교 한의학과 간계내과학교실) ;
  • 허왕정 (대전대학교 한의학과 심계내과학교실) ;
  • 류호룡 (대전대학교 한의학과 심계내과학교실)
  • Received : 2022.07.06
  • Accepted : 2022.10.25
  • Published : 2022.10.25

Abstract

In Korean medicine, the "five viscera" theory develops into the theory of homeostasis, in which the dynamic equilibrium state of the yin yang and five elements in the body maintain the balance of the physiological functions. The "five viscera" of the "five elements" can also be referred to as the "functional system," a conceptual system that includes all functional interactions mediated by the organ as well as the organ itself. Nowadays, the structure and function of the organs and tissues in the body are being re-examined, and there is now enough evidence that organs, structures, and their functions that belong to the same "element" are all connected in terms of energy metabolism. The functional system of the "kidney" includes the kidney itself, as well as other components that belong to "water" of the five elements such as bladder, bone, ear, essence, memory, and fear. The authors will discuss the latest findings in science and medicine to expand the understanding of the "Kidney" functional system to the level of molecular physiology.

Keywords

Acknowledgement

이 성과는 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2022R1A2C2006535).

References

  1. Kim MH, Kim BS. Study on the Concept and Its Structure of Visceral System in Current Traditional Korean Medicine. J Physiol & Pathol Korean Med. 2017 Dec;31(6):305-12. https://doi.org/10.15188/kjopp.2017.12.31.6.305
  2. The Co-textbook Publishing Committee of Physiology of Korean Medicine. Physiology of Korean Medicine. 2nd ed. Seoul: Jipmoondang; 2008.
  3. Kim WH. New Introduction to the New Physiology. Seoul: Kyunghee University College of Korean Medicine; 1984.
  4. MEDICLASSICS [internet]. Daejeon: Korea Institute of Oriental Medicine. [2015]-. [cited 2022 Jul 5]. Available from: https://www.mediclassics.kr/
  5. Kim JH. Water and Sodium Balance of Body Fluid. J Korean Soc Pediatr Nephrol 2010;14(2):111-9. https://doi.org/10.3339/jkspn.2010.14.2.111
  6. Firsov D, Bonny O. Circadian rhythms and the kidney. Nat Rev Nephrol. 2018;14(10):626-35. https://doi.org/10.1038/s41581-018-0048-9
  7. Nagami GT, Hamm LL. Regulation of Acid-Base Balance in Chronic Kidney Disease. Adv Chronic Kidney Dis. 2017;24(5):274-9. https://doi.org/10.1053/j.ackd.2017.07.004
  8. Firsov D, Bonny O. Circadian Regulation of Renal Function. Kidney Int. 2010;78(7):640-5. https://doi.org/10.1038/ki.2010.227
  9. Stow LR, Gumz ML. The Circadian Clock in the Kidney. J Am Soc Nephrol. 2011;22(4):598-604. https://doi.org/10.1681/ASN.2010080803
  10. Negoro H, Kanematsu A, Yoshimura K, Ogawa O. Chronobiology of Micturition: Putative Role of the Circadian Clock. J Urol. 2013;190(3):843-9. https://doi.org/10.1016/j.juro.2013.02.024
  11. Boivin DB, Duffy JF, Kronauer RE, Czeisler CA. Sensitivity of the Human Circadian Pacemaker to Moderately Bright Light. J Biol Rhythms. 1994;9(3-4):315-31. https://doi.org/10.1177/074873049400900311
  12. Dashti HS, Follis JL, Smith CE et al. Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits. Diabetes Care. 2015;38(8):1456-66. https://doi.org/10.2337/dc14-2709
  13. Skrlec I, Milic J, Heffer M et al. Circadian Clock Genes and Circadian Phenotypes in Patients with Myocardial Infarction. Adv Med Sci. 2019;64(2):224-9. https://doi.org/10.1016/j.advms.2018.12.003
  14. Viola AU, Archer SN, James LM et al. PER3 Polymorphism Predicts Sleep Structure and Waking Performance. Curr Biol. 2007;17(7):613-8. https://doi.org/10.1016/j.cub.2007.01.073
  15. Hida A, Kitamura S, Katayose Y et al. Screening of Clock Gene Polymorphisms Demonstrates Association of a PER3 Polymorphism with Morningness-Eveningness Preference and Circadian Rhythm Sleep Disorder. Sci Rep. 2014;4(1):1-6
  16. Trudel E, Bourque CW. Circadian Modulation of Osmoregulated Firing in Rat Supraoptic Nucleus Neurones. J Neuroendocrinol. 2012;24(4):577-86. https://doi.org/10.1111/j.1365-2826.2012.02298.x
  17. Minors DS, Waterhouse JM. Circadian Rhythms of Urinary Excretion: The Relationship between the Amount Excreted and the Circadian Changes. J Physiol. 1982;327(1):39-51. https://doi.org/10.1113/jphysiol.1982.sp014218
  18. Negoro H, Kanematsu A, Suadicani SO et al. Involvement of Urinary Bladder Connexin43 and the Circadian Clock in Coordination of Diurnal Micturition Rhythm. Nat Commun. 2012;3(1):1-0.
  19. Chihara I, Negoro H, Kono J et al. Coordination of Bladder Peripheral Clock and Diurnal Micturition Pattern by Glucocorticoids. Research Square. 2022.
  20. Kim CS, Kim SW. Vitamin D and Chronic Kidney Disease. Korean J Intern Med. 2014;29(4):416.
  21. Williams S, Malatesta K, Norris K. Vitamin D and Chronic Kidney Disease. Ethn Dis. 2009;19(4 Suppl 5):S5 -8-11.
  22. Seifert ME, Hruska KA. The Kidney-Vascular-Bone Axis in the Chronic Kidney Disease-Mineral Bone Disorder. Transplantation. 2016;100(3):497.
  23. Ju D, Liu M, Zhao H et al. Mechanisms of "Kidney Governing Bones" Theory in Traditional Chinese Medicine. Front Med. 2014;8(3):389-93. https://doi.org/10.1007/s11684-014-0362-y
  24. Zhu H, Liu Q, Li W et al. Biological Deciphering of the "Kidney Governing Bones" Theory in Traditional Chinese Medicine. Evid Based Complementary Altern Med. 2022;1685052.
  25. Hirai T. Circadian Clock and Bone Biology. J Oral Biosci. 2017;59(4):179-83.
  26. Pols HA, van Leeuwen JP. Osteoblast Differentiation and Control by Vitamin D and Vitamin D Metabolites. Curr Pharm Des. 2004;10(21):2535-55.
  27. Masterjohn C. Vitamin D Toxicity Redefined: Vitamin K and the Molecular Mechanism. Med Hypotheses. 2007;68(5):1026-34. https://doi.org/10.1016/j.mehy.2006.09.051
  28. Kuang X, Liu C, Guo X et al. THe Combination Effect of Vitamin K and Vitamin D on Human Bone Quality: A Meta-Analysis of Randomized Controlled Trials. Food Funct. 2020;11(4):3280-97.
  29. Bacchetta J, Boutroy S, Guebre-Egziabher F et al. The Relationship between Adipokines, Osteocalcin and Bone Quality in Chronic Kidney Disease. Nephrol Dial Transplant. 2009;24(10):3120-5.
  30. Berger JM, Karsenty G. Osteocalcin and the Physiology of Danger. FEBS Lett. 2022;596(5):665-80. https://doi.org/10.1002/1873-3468.14259
  31. Gundberg CM, Markowitz ME, Mizruchi M et al. Osteocalcin in Human Serum: A Circadian Rhythm. J Clin Endocrinol Metab. 1985;60(4):736-9. https://doi.org/10.1210/jcem-60-4-736
  32. Power MJ, Fottrell PF. Osteocalcin: Diagnostic Methods and Clinical Applications. Crit Rev Clin Lab Sci. 1991;28(4):287-335. https://doi.org/10.3109/10408369109106867
  33. Winter EM, Kooijman S, Appelman-Dijkstra NM et al. Chronobiology and Chronotherapy of Osteoporosis. JBMR Plus. 2021;5(10):e10504.
  34. Zhang J, Wang N. Leptin in Chronic Kidney Disease: A Link between Hematopoiesis, Bone Metabolism, and Nutrition. Int Urol Nephrol. 2014;46(6):1169-74. https://doi.org/10.1007/s11255-013-0623-8
  35. Wang H, Leng Y, Gong Y. Bone Marrow Fat and Hematopoiesis. Front Endocrinol. 2018;9:694.
  36. The Co-textbook Publishing Committee of Korean Internal Medicine of Renal Disease. Korean Internal Medicine of Renal Disease. Seoul: Koonja; 2011.
  37. Miner JH. Pathology vs. Molecular Genetics:(Re) Defining the Spectrum of Alport Syndrome. Kidney Int. 2014;86(6):1081-3. https://doi.org/10.1038/ki.2014.326
  38. Koping M, Shehata-Dieler W, Schneider D et al. Characterization of Vertigo and Hearing Loss in Patients with Fabry Disease. Orphanet J Rare Dis. 2018;13(1):1-9. https://doi.org/10.1186/s13023-017-0741-y
  39. Unzaki AI, Morisada N, Nozu K et al. Clinically Diverse Phenotypes and Genotypes of Patients with Branchio-Oto-Renal Syndrome. J Hum Genet. 2018;63(5):647-56. https://doi.org/10.1038/s10038-018-0429-8
  40. Hearn T. ALMS1 and Alstrom Syndrome: A Recessive Form of Metabolic, Neurosensory and Cardiac Deficits. Journal of Molecular Medicine. 2019;97(1):1-7. https://doi.org/10.1007/s00109-018-1714-x
  41. da Silva Cunha T, Heilberg IP. Bartter Syndrome: Causes, Diagnosis, and Treatment. Int J Nephrol Renovasc Dis. 2018;11:291.
  42. Thodi C, Thodis E, Danielides V et al. Hearing in Renal Failure. Nephrol Dial Transplant. 2006;21(11):3023-30. https://doi.org/10.1093/ndt/gfl472
  43. Liu W, Meng Q, Wang Y et al. The Association between Reduced Kidney Function and Hearing Loss: A Cross-Sectional Study. BMC nephrol. 2020;21(1):1-9. https://doi.org/10.1186/s12882-019-1645-y
  44. Seo YJ, Ko SB, Ha TH et al. Association of Hearing Impairment with Chronic Kidney Disease: A Cross-Sectional Study of the Korean General Population. BMC nephrol. 2015;16(1):1-7. https://doi.org/10.1186/1471-2369-16-1
  45. Jang YS, Kang MK. Relationship between Bone Mineral Density and Clinical Features in Women with Idiopathic Benign Paroxysmal Positional Vertigo. Otol Neurotol. 2009;30(1):95-100. https://doi.org/10.1097/MAO.0b013e31818f5777
  46. Yang CJ, Kim Y, Lee HS et al. Bone Mineral Density and Serum 25-Hydroxyvitamin D in Patients with Idiopathic Benign Paroxysmal Positional Vertigo. J Vestib Res. 2017;27(5-6):287-94. https://doi.org/10.3233/VES-170625
  47. Jeong SH, Kim JS, Kim HJ et al. Prevention of Benign Paroxysmal Positional Vertigo with Vitamin D Supplementation: A Randomized Trial. Neurology. 2020;95(9):e1117-25. https://doi.org/10.1212/wnl.0000000000010343
  48. Zhang J, Xu X, Huang J et al. Discussion on "Essence and Blood Homology Theory" Based on Hematopoietic Stem Cells. Materials of the 13th Annual Conference on Basic Theory of Integrated Traditional Chinese and Western Medicine in China. 2017.
  49. Zanjani ED, Ascensao JL, McGlave PB et al. Studies on the Liver to Kidney Switch of Erythropoietin Production. J Clin Investig. 1981;67(4):1183-8. https://doi.org/10.1172/JCI110133
  50. Donnelly S. Why Is Erythropoietin Made in the Kidney? The Kidney Functions as a Critmeter. Am J Kidney Dis. 2001;38(2):415-25. https://doi.org/10.1053/ajkd.2001.26111
  51. Yoo DH, Cho DH, Doo HK. Literature Review on Kidney Governing Inspiration. Journal of Korean Medicine. 1992;13(1):293-300.
  52. Pyeon BA. Correction of Anemia in Patients with Chronic Renal Failure (Administration of Hematopoietic Hormones). J Kor Soc Health-Syst Pharm. 2012;29(1):87-94.
  53. Price EA. Aging and Erythropoiesis: Current State of Knowledge. Blood Cells Mol Dis. 2008 Sep;41(2):158-65. https://doi.org/10.1016/j.bcmd.2008.04.005
  54. Jeong SC, Kim YJ. A study on the meaning of "Essence" in The Yellow Emperor's Classic of Internal Medicine. The Journal of Korean Medical Classics. 2005;18(4):93-100.
  55. Dumanski SM, Ahmed SB. Fertility and Reproductive Care in Chronic Kidney Disease. J Nephrol. 2019;32(1):39-50. https://doi.org/10.1007/s40620-018-00569-9
  56. Singh S, Kumar D, Lal AK. Serum Osteocalcin as a Diagnostic Biomarker for Primary Osteoporosis in Women. Journal of Clinical and Diagnostic Research: JCDR. 2015;9(8):RC04.
  57. Schatz M, Saravanan S, d'Adesky ND et al. Osteocalcin, Ovarian Senescence, and Brain Health. Front Neuroendocrinol. 2020;59:100861.
  58. Khrimian L, Obri A, Ramos-Brossier M et al. Gpr158 Mediates Osteocalcin's Regulation of Cognition. J Exp Med. 2017;214(10):2859-73. https://doi.org/10.1084/jem.20171320
  59. Berger JM, Singh P, Khrimian L et al. Mediation of the Acute Stress Response by the Skeleton. Cell Metab. 2019;30(5):890-902. https://doi.org/10.1016/j.cmet.2019.08.012
  60. Kondo N, Yoshimoto M, Ikegame S et al. Differential Shifts in Baroreflex Control of Renal and Lumbar Sympathetic Nerve Activity Induced by Freezing Behaviour in Rats. Expe Physiol. 2021;106(10):2060-9. https://doi.org/10.1113/EP089742
  61. Miki K, Yoshimoto M. Exercise-Induced Modulation of Baroreflex Control of Sympathetic Nerve Activity. Front Neurosci. 2018;12:493.