DOI QR코드

DOI QR Code

Avian influenza virus surveillance in wild bird in South Korea from 2019 to 2022

  • Eun-Jee, Na (Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University) ;
  • Su-Beom, Chae (Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University) ;
  • Jun-Soo, Park (Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University) ;
  • Yoon-Ji, Kim (Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University) ;
  • Young-Sik, Kim (Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University) ;
  • Jae-Ku, Oem (Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University)
  • Received : 2022.11.11
  • Accepted : 2022.12.12
  • Published : 2022.12.30

Abstract

Avian influenza viruses (AIVs) cause contagious diseases and have the potential to infect not only birds but also mammals. Wild birds are the natural reservoir of AIVs and spread them worldwide while migrating. Here we collected active AIV surveillance data from wild bird habitats during the 2019 to 2022 winter seasons (from September to March of the following year) in South Korea. We isolated 97 AIVs from a total of 7,590 fecal samples and found the yearly prevalence of AIVs was 0.83, 1.48, and 1.27, respectively. The prevalence of AIVs were generally higher from September to November. These findings demonstrate that a high number of wild birds that carry AIVs migrate into South Korea during the autumn season. The highest virus numbers were isolated from the species Anas platyrhynchos (72%; n=70), followed by Anas poecilorhyncha (15.4%; n=15), suggesting that each is an important host for these pathogens. Twenty-five hemagglutinin-neuraminidase subtypes were isolated, and all AIVs except the H5N8 subtype were found to be low-pathogenic avian influenza viruses (LPAIVs). Active surveillance of AIVs in wild birds could benefit public health because it could help to estimate their risk for introduction into animals and humans. Moreover, considering that 132 cases of human AIV infections have been reported worldwide within the last 5 years, active surveillance of AIVs is necessary to avoid outbreaks.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2019R1A6A1A03033084), as well as by a Government-sponsored R&D Fund for infectious disease research (GFID; HG18C0084). We would also like to express our gratitude to the editors of the Writing Center at Jeonbuk National University for their skilled English-language assistance.

References

  1. Barbara A, Torrontegi O, Camacho MC, Barral M, Hernandez JM, Hofle U. 2017. Avian influenza virus surveillance in south-central Spain using fecal samples of aquatic birds foraging at landfills. Frontiers in Veterinary Science 4: 178.
  2. Brown JD, Poulson R, Stallknecht DE. 2014. Wild bird surveillance for avian influenza virus. Methods Mol Biol 1161: 69-81.
  3. Choi SH, Choi G, Nam HK. 2022. Impact of rice paddy agriculture on habitat usage of migratory shorebirds at the rice paddy scale in Korea. Scientific Reports 12: 1-11.
  4. Fuller TL, Saatchi SS, Curd EE, Toffelmier E, Thomassen HA, Buermann W, DeSante DF, Nott MP, Saracco JF, Ralph CJ, Alexander JD, Pollinger JP, Smith TB. 2010. Mapping the risk of avian influenza in wild birds in the US. BMC Infectious Disease 10: 1-13. https://doi.org/10.1186/1471-2334-10-1
  5. Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y, Li Z, Guan Y, Tian G, Li Y, Shi J, Liu L, Zeng X, Bu Z, Xia X, Kawaoka Y, Chen H. 2009. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog 5: e1000709.
  6. Garcia M, Crawford JM, Latimer JW, Cruz ER, Perdue ML. 1996. Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. Journal of General Virology 77: 1493-.1504.
  7. Gonzales JL, Elbers ARW, Bouma A, Koch G, de Wit JJ, Stegeman JA. 2012. Transmission characteristics of low pathogenic avian influenza virus of H7N7 and H5N7 subtypes in layer chickens. Vet Microbiol 155: 207-213. https://doi.org/10.1016/j.vetmic.2011.09.016
  8. Hansen BD, Rogers DI, Watkins D, Wellern DR, Clemens RS, Newman, M, Woehler EJ, Mundkur T, Fuller RA. 2022. Generating population estimates for migratory shorebird species in the world's largest flyway. IBIS. 164: 735-749. https://doi.org/10.1111/ibi.13042
  9. Hill NJ, Takekawa JY, Cardona CJ, Meixell BW, Ackerman JT, Runstadler JA, Boyce WM. 2012. Cross-seasonal patterns of avian influenza virus in breeding and wintering migratory birds: a flyway perspective. Vector-Borne and Zoonotic Diseases 12: 243-253. https://doi.org/10.1089/vbz.2010.0246
  10. Hoffmann B, Hoffmann D, Henritzi D, Beer M, Harder TC. 2016. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses. Sci Rep 6, 27211.
  11. Jeong J, Kang HM, Lee EK, Song BM, Kwon YK, Kim HR, Choi KS, Kim JY, Lee HJ, Moon OK, Jeong W, Choi J, Baek JH, Joo YS, Park YH, Lee HS, Lee YJ. 2014. Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Vet Microbiol 173: 249-257. https://doi.org/10.1016/j.vetmic.2014.08.002
  12. Jeong S, Lee DH, Kwon JH, Kim YJ, Lee SH, Cho AY, Kim TH, Park JE, Lee SI, Song CS. 2020. Highly pathogenic avian influenza clade 2.3.4.4b subtype H5N8 virus isolated from Mandarin duck in South Korea, 2020. Viruses 12: 1389.
  13. Keawcharoen J, van Riel D, van Amerongen G, Bestebroer T, Beyer WE, van Lavieren R, Osterhaus ADME, Fouchier RAM, Kuiken T. 2008. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 14: 600-607. https://doi.org/10.3201/eid1404.071016
  14. Kim ET, Cho HW, Pak SI. 2021. Home range of mallard (Anas platyrhynchos) and spot-billed duck (Anas poecilorhyncha) during the 2014/15 highly pathogenic avian influenza epidemics in the Republic of Korea. 예방수의학회지 45: 153-157.
  15. Kuchipudi SV, Nissly RH. 2018 Novel flu viruses in bats and cattle: "pushing the envelope" of influenza infection. Veterinary Sciences 5: 71.
  16. Lee K, Yu D, Martinez-Lopez B, Yoon H, Kang SI, Hong SK, Lee I, Kang Y, Jeong W, Lee E. 2020. Fine-scale tracking of wild waterfowl and their impact on highly pathogenic avian influenza outbreaks in the Republic of Korea, 2014~2015. Scientific Reports 10: 1-16.
  17. Lycett SJ, Bodewes R, Pohlmann A, Banks J, Banyai K, Boni MF, Bouwstra R, Breed AC, Brown IH, Chen H, Dan A, DeLiberto TJ, Diep N, Gilbert M, Hill S, Ip HS, Ke CW, Kida H, Killian ML, Koopmans MP, Kwon JH, Lee DH, Lee JY, Lu L, Monne I, Pasick J, Pybus OG, Rambaut A, Robinson TP, Sakoda Y, Zohari S, Song CS, Swayne DE, Torchetti MK, Tsai HJ, Fouchier RAM, Beer M, Woolhouse M, Kuiken T. 2016. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354: 213-217. https://doi.org/10.1126/science.aaf8852
  18. Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. 2018. Zoonotic potential of influenza a viruses: a comprehensive overview. Viruses. 10: 497.
  19. Munster VJ, Baas C, Lexmond P, Waldenstrom J, Wallensten A, Fransson T, Rimmelzwaan GF, Beyer WEP, Schutten M, Olsen B, Osterhaus ADME, Fouchier RAM. 2007. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 3: e61.
  20. Sagong M, Lee YN, Song S, Cha RM, Lee EK, Kang YM, Cho HK, Kang HM, Lee YJ, Lee KN. 2022. Emergence of clade 2.3. 4.4 b novel reassortant H5N1 high pathogenicity avian influenza virus in South Korea during late 2021. Transboundary and Emerging Diseases 69: e3255-e3260.
  21. Shin JH, Woo C, Wang SJ, Jeong J, An IJ, Hwang JK, Jo SD, Yu SD, Choi K, Chung, HM, Suh JH, Kim SH. 2015. Prevalence of avian influenza virus in wild birds before and after the HPAI H5N8 outbreak in 2014 in South Korea. Virology 53: 475-480.
  22. Stallknecht DE, Shane SM. 1988. Host range of avian influenza virus in free-living birds. Vet Res Commun 12: 125-141. https://doi.org/10.1007/BF00362792
  23. Stear MJ. 2005. OIE Manual of Diagnotic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees) 5th ed. Volumes1&2. Parasitology, 130: 727-727. https://doi.org/10.1017/S0031182005007699
  24. Sutton TC. 2018. The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses 10: 461.
  25. Tang L, Tang W, Li X, Hu C, Wu D, Wang T, He GJV. 2020. Avian influenza virus prevalence and subtype diversity in wild birds in Shanghai, China, 2016~2018. Viruses 12: 1031.
  26. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 1992. Evolution and ecology of influenza A viruses. Microbiol Rev 56: 152-179. https://doi.org/10.1128/mr.56.1.152-179.1992
  27. Wille M, Brojer C. Lundkvist A, Jarhult JD, 2018. Alternative routes of influenza A virus infection in Mallard (Anas platyrhynchos). Veterinary Research 49: 1-9. https://doi.org/10.1186/s13567-017-0498-2