DOI QR코드

DOI QR Code

Development of a Flexure Yielding Steel Damper for Concentrically Braced Frames

중심가새골조의 내진성능향상을 위한 휨항복댐퍼의 개발

  • Seong-Hoon, Jeong (Department of Architectural Engineering, Inha University) ;
  • Ali, Ghamari (Department of Civil Engineering, Ilam-Branch, Islamic-Azad University)
  • Received : 2022.11.24
  • Accepted : 2022.12.01
  • Published : 2022.12.31

Abstract

This paper details the analytical and experimental studies performed to propose a steel damper based on the flexural yielding mechanism. The damper is composed of a set of damping plates that are designed to yield in flexure. The comparison of experimental and finite element analysis results indicate that the analytical approach adopted in this study should be appropriate to perform sensitivity studies on the geometries of the damping plates. Although the damper is originally proposed to work based on the flexural mechanism, it is observed that the contribution of the tensile behavior of the damping plate could be considerable. As the thickness of the damping plate increases, the plastic energy due to the flexural yield increases. As the thickness of the damping plate decreases, the contribution of the tensile behavior increases, and the shape of the hysteresis loop distorts.

본 논문에서는 휨 항복 메커니즘을 기반으로 한 강재이력 댐퍼를 제안하기 위한 해석 및 실험적 연구를 수행하였다. 댐퍼는 휨모멘트에 의한 항복거동을 하도록 설계된 일련의 댐핑 플레이트로 구성된다. 실험 결과와 유한요소해석 결과의 비교를 통해서 본 연구에서 채택된 해석적 접근방식이 댐핑 플레이트의 형태 및 상세에 대한 민감도 연구를 수행하기에 적절함을 확인하였다. 최초에 제안된 댐퍼는 휨 항복 메커니즘을 기반으로 작동하는 것으로 고안되었으나, 댐핑 플레이트의 인장 거동에 대한 기여도가 상당할 수 있음을 관찰할 수 있었다. 댐핑 플레이트의 두께가 증가함에 따라 휨 항복에 의한 에너지 흡수량이 증가한다. 댐핑 플레이트의 두께가 감소함에 따라 인장에 의한 댐퍼의 비선형 거동 기여도가 증가하고 좌굴 발생으로 인하여 이력곡선의 형상이 댐퍼로서 불리해진다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 21CTAP-C164148-01)에 의해 수행되었습니다.

References

  1. Bouwkamp, J., Vetr, M.G., Ghamari, A. (2016) An Analytical Model for Inelastic Cyclic Response of Eccentrically Braced Frame with Vertical Shear Link (V-EBF), Case Stud. Struct. Eng., 6, pp.31~44 https://doi.org/10.1016/j.csse.2016.05.002
  2. Bruneau, M., Uang C.M., Whittaker, A. (1998) Ductile Design of Steel Structures, McGraw-Hill, Boston, p.365.
  3. El-Sayed, T., El-Mongy, H. (2018) Application of Variational Iteration Method to Free Vibration Analysis of a Tapered Beam Mounted on Two-degree of Freedom Subsystems, Appl. Math. Model., 16, pp.1107~1122.
  4. Fan, S., Ding, Z., Du, L., Shang, C., Liu, M. (2016) Nonlinear Finite Element Modeling of Two-stage Energy Dissipation Device with Low-yield-point Steel, Int. J. Steel Struct., 30(4), pp.383~392.
  5. Ghamari, A., Haeri, H., Khaloo, A., Zhu, Z. (2019) Improving the Hysteretic Behavior of Concentrically Braced Frame (CBF) by a Proposed Shear Damper, Int. J. Steel Struct., 16, pp.1107~1122. https://doi.org/10.1007/s13296-016-0029-4
  6. Ghamari, A., Kim, Y., Bae, J. (2021) Utilizing an I-shaped Shear Link as a Damper to Improve the Behaviour of a Concentrically Braced Frame, J. Constr. Steel Res., 186(1), 106915.
  7. Han, Q., Jia, J., Xu, Z., Bai, Y., Song, N. (2014) Experimental Evaluation of Hysteretic Behavior of Rhombic Steel Plate Dampers, Adv. Mech. Eng., 6, 185629.
  8. He, Z., Chen, Q. (2021) Upgrading the Seismic Performance of Underground Structures by Introducing Lead-Filled Steel Tube Dampers, Tunn. & Undergr. Space Technol., 108, 103727.
  9. Hsu, H.-L. Juang, J.-L., Chou, C.-H. (2011) Experimental Evaluation on the Seismic Performance of Steel Knee Braced Frame Structures with Energy Dissipation Mechanism, Steel & Compos. Struct., 11(1), pp.77~91. https://doi.org/10.12989/scs.2011.11.1.077
  10. Hsu, H., Halim, H. (2017) Improving Seismic Performance of Framed Structures with Steel Curved Dampers, Eng. Struct., 130, pp.99~111. https://doi.org/10.1016/j.engstruct.2016.09.063
  11. Lee, J., Kim, J. (2017) Development of Box-Shaped Steel Slit Dampers for Seismic Retrofit of Building Structures, Eng. Struct., 150, pp.934~946. https://doi.org/10.1016/j.engstruct.2017.07.082
  12. Lian, M., Su, M. (2018) Seismic Testing and Numerical Analysis of Y-Shaped Eccentrically Braced Frame Made of HighStrength Steel, Struct. Des. Tall & Spec. Build., 27 (6), e1455.
  13. Lotfi Mahy ari, S., Tajmir, H., Riahi, H., Hashemi, M. (2019) Investigating the Analytical and Experimental Performance of a Pure Torsional Yielding Damper, J. Constr. Steel Res., 161, pp.385~399. https://doi.org/10.1016/j.jcsr.2019.07.010
  14. Qiao, S., Han, X., Zhou, K., (2017) Bracing Configuration and Seismic Performance of Reinforced Concrete Frame with Brace, Struct. Des. Tall & Spec. Build., 26(14), e1381.
  15. Roeder, C.W., Popov, E.P. (1977) Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Loadings, 20375, NASA STI/Recon Technical Report N 78, 318.
  16. Safeer, M., Sahoo, D. (2017) Mitigation of Seismic Drift Response of Braced Frames using Short Yielding-Core BRBs, Steel & Compos. Struct., 23(3), pp.285~302. https://doi.org/10.12989/scs.2017.23.3.285
  17. Skalomenos, K., Whittall, T., Kurata, M., Pickering, J. (2022) Component Testing and Multi-Level Seismic Design of Steel Braced Frames with High Post-Yielding Stiffness and Two-Phase Yielding, Soil Dyn. & Earthq. Eng., 157, 107248.
  18. Taiyari, F., Mazzolani, F., Bagheri, S. (2019) A Proposal for Energy Dissipative Brace with U-Shaped Steel Strips, J. Constr. Steel Res., 154, pp.110~122. https://doi.org/10.1016/j.jcsr.2018.11.031
  19. Tsai, K., Chen, H., Hong, C., Su, Y. (1993) Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction, Earthq. Spectra, 9(3), pp.505~528. https://doi.org/10.1193/1.1585727
  20. Wang, Y.-P., Chien, C.-S.C. (2009) A Study on using Pre-Bent Steel Strips as Seismic Energy-Dissipative Devices, Earthq. Eng. & Struct. Dyn., 38(8), pp.1009~1026. https://doi.org/10.1002/eqe.880
  21. Xia, C., Hanson, R.D. (1992) Influence of ADAS Element Parameters on Building Seismic Response, J. Struct. Eng., 118(7), pp.1903~1918. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1903)