References
- Ashby, M.F.A. and Hallam, S.D. (1986), "The failure of brittle solids containing small cracks under compressive stress states", Acta Metall Sin, 34(3), 497-510. https://doi.org/10.1016/0001-6160(86)90086-6.
- Bagher Shemirani, A., Amini, M.S. and Sarfarazi, V. (2021), "Experimental and numerical investigation of the effect of bridge area and its angularities on the failure mechanism of non-persistent crack in concrete-like materials", Smart Struct. Syst., 27(3), 54-67. https://doi.org/10.12989/sss.2021.27.3.479.
- Ban, L., Du, W., Jin, T., Qi, C. and Li, X. (2021), "A roughness parameter considering joint material properties and peak shear strength model for rock joints", Int. J. Min. Sci. Tech., 31(3), 413-420. https://doi.org/10.1016/j.ijmst.2021.03.007.
- Barenblatt, G.I. (1962), "The mathematical theory of equilibrium of cracks in brittle fracture", Adv. Appl. Mech., 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2.
- Baud, P., Reuschle, T. and Charlez, P. (1996), "An improved wing crack model for the deformation and failure of rock in compression", Int. J. Rock Mech. Min. Sci., 33(5), 539-542. https://doi.org/10.1016/0148-9062(96)00004-6.
- Bobet, A. and Einstein, H.H. (1998a), "Numerical modeling of fracture coalescence in a model rock material", Int. J. Fract., 92, 221-252. https://doi.org/10.1023/A:1007460316400.
- Bobet, A. and Einstein, H.H. (1998b), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
- Cao, R., Yao, R., Meng, J., Lin, Q., Lin, H. and Li, S. (2020), "Failure mechanism of non-persistent jointed rock-like specimens under uniaxial loading: laboratory testing", Int. J. Rock Mech. Min. Sci., 132, 104341. https://doi.org/10.1016/j.ijrmms.2020.104341.
- Cheng, X. (2019), "Damage and failure characteristics of rock similar materials with pre-existing cracks", Int. J. Coal Sci. Tech., 6(4), 505-517. https://doi.org/10.1007/s40789-019-0263-4.
- Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8, 100-1041. https://doi.org/10.1016/0022-5096(60)90013-2.
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar nonpersistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2.
- Gonc,laves da Silva, B. and Einstein, H.H. (2013), "Modeling of crack initiation, propagation and coalescence in rocks", Int. J. Fract., 182, 167-186. https://doi.org/10.1007/s10704-013-9866-8.
- Griffith, A.A. (1920), "The phenomenon of rupture and flow in solids", Philos. Transac. Royal Soc., 221, 163-198. https://doi.org/10.1098/rsta.1921.0006.
- Haeri, H. and Sarfarazi, V. (2019), "Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression", Smart Struct. Syst., 23(5), 47-59. https://doi.org/10.12989/sss.2019.23.5.479.
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7.
- Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation in rock under compression", J. Fract. Mech., 1(3), 139-155. https://doi.org/10.1007/BF00186851.
- Horri, H. and Nemat-Naseer, S. (1985), "Compression-induced microcrack growth in brittle soilds: Axial splitting and shear failure", J. Geophys. Res., 90(B4), 3105-3125. https://doi.org/10.1029/JB090iB04p03105.
- Hu, J., Wen, G., Lin, Q., Cao, P. and Li, S. (2020), "Mechanical properties and crack evolution of double-layer composite rocklike specimens with two parallel fissures under uniaxial compression", Theo. Appl. Fract. Mech., 108, 102610. https://doi.org/10.1016/j.tafmec.2020.102610.
- Huang, C.H., Yang, W., Duan, K., Fang, L., Wang, L. and Bo, C.H. (2019), "Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression", Constr. Build. Mater., 220, 426-443. https://doi.org/10.1016/j.conbuildmat.2019.05.159.
- Kou, M., Liu, X., Tang, S. and Wang, Y. (2019), "3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydro-mechanical loading", Theor. Appl. Fract. Mech., 104, 102396. https://doi.org/10.1016/j.tafmec.2019.102396.
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre cracked specimens under uniaxial compression", Int. J. Solid. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
- Lin, Q. and Cao, P. (2020), "Fatigue behaviour and constitutive model of yellow sandstone containing pre-existing surface crack under uniaxial cyclic loading", Theo. Appl. Fract. Mech., 109(2), 66-78. https://doi.org/10.1016/j.tafmec.2020.102776.
- Lin, Q. and Cao, P. (2020), "Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression", Arch. Civil Mech. Eng., 20(1), 69-79. https://doi.org/10.1007/s43452-020-00027-z.
- Lin, Q. and Cao, P. (2021), "Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression", Int. J. Rock Mech. Min. Sci., 139(2), 66-78. https://doi.org/10.1016/j.ijrmms.2021.104621.
- Lin, Q., Cao, P., Cao, R., Lin, H. and Meng, J. (2020), "Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression", Arch. Civil Mech. Eng., 20(1), 19. https://doi.org/10.1007/s43452-020-00027-z.
- Lin, Q., Cao, P., Meng, J., Cao, R. and Zhao, Z. (2020), "Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling", Theo. Appl. Fract. Mech., 109, 102692. https://doi.org/10.1016/j.tafmec.2020.102692.
- Lisjak, A., Figi, D. and Grasselli, G. (2014), "Fracture development around deep underground excavations: Insights from FDEM modelling", J. Rock Mech. Geotech. Eng., 6, 493-505. https://doi.org/10.1016/j.jrmge.2014.09.003.
- Luo, X., Cao, P. and Lin, Q. (2021), "Mechanical behaviour of fracture-filled rock-like specimens under compression-shear loads: An experimental and numerical study", Theo. Appl. Fract. Mech., 113(3), 123-134. https://doi.org/10.1016/j.tafmec.2021.102935.
- Mahabadi, O.K., Lisjak, A., Grasselli, G. and Munjiza, A. (2012), "Y-Geo: A new combined finite-discrete element numerical code for geomechanical applications", Int. J. Geomech., 12(6), 676-688. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000216.
- Miao, S., Pan, P.Z., Wu, Z., Li, S. and Zhao, S. (2018), "Fracture analysis of sandstone with a single filled flaw under uniaxial compression", Eng. Fract. Mech., 204, 319-343. https://doi.org/10.1016/j.engfracmech.2018.10.009.
- O ner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Orowan, E. (1949), "Fracture and strength of solids", Repts. Progr. Phys., 12, 185-232. https://doi.org/10.1088/0034-4885/12/1/309.
- Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
- Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1155/2021/6672913.
- Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", 46th US Rock Mechanics Geomechanics Symposium, OnePetro.
- Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions", Geosyst. Eng., 18(1), 1-28. https://doi.org/10.1080/12269328.2014.998346.
- Potyondy, D.O. (2017), "Simulating perforation damage with a flat-jointed bonded-particle material", 51st US Rock Mechanics Geomechanics Symposium, San Francisco, California, USA.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
- Qian, X.K., Liang, Z.Z., Liao, Z.Y. and Wang, K. (2020), "Numerical investigation of dynamic fracture in rock specimens containing a pre-existing surface flaw with different dip angles", Eng. Fract. Mech. 223, 106675. https://doi.org/10.1155/2018/8027582.
- Reyes, O. and Einstein, H.H. (1991), "Failure mechanism of fractured rock-a fracture coalescence model", Proceedings of the 7th Congress of the ISRM, Aachen, Germany.
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock- model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
- Steif, P.S. (1984), "Crack extension under compressive loading", Eng. Fract. Mech., 20(3), 463-473. https://doi.org/10.1016/0013-7944(84)90051-1.
- Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 32-45. https://doi.org/10.12989/cac.2020. 25.6.032.
- Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Min. Sci., 33(2), 119-139. https://doi.org/10.1016/j.ijmecsci.2017.05.019.
- Wong, L.N.Y. and Einstein, H.H. (2009a), "Crack coalescence in molded gypsum and Carrara marble: part 1-macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4.
- Wong, L.N.Y. and Einstein, H.H. (2009b), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006.
- Wu, Q.H., Li, X.B., Weng, L., Li, Q.F., Zhu, Y.J. and Luo, R. (2019), "Experimental investigation of the dynamic response of prestressed rockbolt by using an SHPB-based rockbolt test system", Tunnel. Underg. Space Tech., 93, 103088. https://doi.org/10.1016/j.tust.2019.103088.
- Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", Rock Mech. Rock Eng., 49(5), 1813-1830. https://doi.org/10.1007/s00603-015-0890-z.
- Xie, Y., Cao, P., Liu, J. and Dong, L. (2016), "Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14. https://doi.org/10.1016/j.compgeo.2015.12.013.
- Xu, Y. and Yuan, H. (2011), "Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods", Eng. Fract. Mech., 78, 544-558. https://doi.org/10.1016/j.engfracmech.2010.03.029.
- Yang, S.Q., Huang, Y.H. and Ranjith, P.G. (2018), "Failure mechanical and acoustic behavior of brine saturated-sandstone containing two pre-existing flaws under different confining pressures", Eng. Fract. Mech., 193, 108-121. https://doi.org/10.1016/j.engfracmech.2018.02.021.
- Yang, S.Q., Yang, Z., Zhang, P.C. and Tian, W.L. (2020), "Experiment and peridynamic simulation on cracking behavior of red sandstone containing a single non-straight fissure under uniaxial compression", Theor. Appl. Fract. Mech., 108, 102637. https://doi.org/10.1016/j.tafmec.2020.102637.
- Yang, W., Li, G., Ranjith, P.G. and Fang, L. (2019), "An experimental study of mechanical behavior of brittle rock-like specimens with multi-non-persistent joints under uniaxial compression and damage analysis", Int. J. Damag. Mech., 28(10), 1490-1522. https://doi.org/10.1177/1056789519832651.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156., https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Zhang, B., Li, S., Yang, X., Xia, K., Liu, J., Guo, S. and Wang, S. (2019), "The coalescence and strength of rock-like materials containing two aligned X-type flaws under uniaxial compression", Geomech. Eng., 17, 47-56. https://doi.org/10.12989/gae.2019.17.1.047.
- Zhang, Q. et al. (2018), "Analysis of mechanical and acoustic emission characteristics of rock materials with double-hole defects based on particle flow code", Shock Vib., 32(1), 23-35. https://doi.org/10.1155/2018/7065029.
- Zhang, X. (2020), "Evaluation of structural safety reduction due to water penetration into a major structural crack in a large concrete project", Smart Struct. Syst., 26(3), 90-108. https://doi.org/10.12989/sss.2020.26.3.319.
- Zhao, Y.L., Zhang, L.Y., Wang, W.J., Tang, J.Z., Lin, H. and Wan, W. (2017), "Transient pulse test and morphological analysis of single rock fractures", Int. J. Rock Mech. Min. Sci., 91, 139-154. https://doi.org/10.1016/j.ijrmms.2016.11.016.
- Zhao, Y.L., Zhang, L.Y., Wang, W.J., Wan, W. and Ma, W.H. (2018), "Separation of elastoviscoplastic strains of rock and a nonlinear creep model", Int. J. Geomech., 18, 04017129. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001033.
- Zhou, T., Zhu, J.B., Ju, Y. and Xie, H.P. (2019), "Volumetric fracturing behavior of 3D printed artificial rocks containing single and double 3D internal flaws under static uniaxial compression", Eng. Fract. Mech., 205, 190-204. https://doi.org/10.1016/j.engfracmech.2018.11.030.
- Zhou, X.P., Li, G.Q. and Ma, H.C. (2020), "Real-time experiment investigations on the coupled thermomechanical and cracking behaviors in granite containing three pre-existing fissures", Eng. Fract. Mech., 224, 106797. https://doi.org/10.1016/j.engfracmech.2019.106797.
- Zhou, X.P., Li, L.H. and Berto, F. (2019), "Cracking behaviors of rock-like specimens containing two sets of preexisting cross flaws under uniaxial compression", J. Test. Eval., 47, 838-867. https://doi.org/10.1520/JTE20170358.
- Zhou, X.P., Zhang, J.Z. and Wong, L.N.Y. (2018), "Experimental study on the growth, coalescence and wrapping behaviors of 3D cross-embedded flaws under uniaxial compression", Rock Mech. Rock Eng., 51, 1379-1400. https://doi.org/10.1007/s00603-018-1406-4.
- Zhou, X.P., Zhang, J.Z., Yang, L.H. and Cui, Y.L. (2018), "Internal morphology of cracking of two 3-D pre-existing cross-embedded flaws under uniaxial compression", Geotech. Test. J., 41, 20170189. https://doi.org/10.1520/GTJ20170189.