Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China [grant number 51921006, 51978224]; China Major Development Project for Scientific Research Instrument [grant number 51827811]; the Shenzhen Technology Innovation Program [grant number JCYJ20180508152238111, JCYJ20200109112803851].
References
- Ahmad, H.R., Namdari, N., Cao, M. and Bayat, M. (2019), "Seismic investigation of pushover methods for concrete piers of curved bridges in plan", Comput. Concrete, 23(1), 1-10. https://doi.org/10.12989/cac.2019.23.1.001.
- Ahmadi, H.R., Mahdavi, N. and Bayat, M. (2020), "Applying adaptive pushover analysis to estimate incremental dynamic analysis curve", J. Earthq. Tsunami, 14(4), 2050016. https://doi.org/10.1142/S1793431120500165.
- Balamonica, K., Gopalakrishnan, N. and Ramamohan Rao, A. (2020), "Seismic analysis of structures subjected to spatially varying earthquake using POD vectors: Experimental and analytical studies", J. Earthq. Tsunami, 14(4), 2050017. https://doi.org/10.1142/S1793431120500177.
- Benzi, M. (2002), "Preconditioning techniques for large linear systems: A survey", J. Comput. Phys., 182, 418-477. https://doi.org/10.1006/jcph.2002.7176.
- Berger-Vergiat, L., Waisman, H., Hiriyur, B., Tuminaro, R. and Keyes, D. (2012), "Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods", Int. J. Numer. Meth. Eng., 90(3), 311-328. https://doi.org/10.1002/nme.3318.
- Bouras, A. and Fraysse, V. (2005), "Inexact matrix-vector products in Krylov methods for solving linear systems: A relaxation strategy", SIAM J. Matrix Anal. Appl., 26(3), 660-678. https://doi.org/10.1137/S0895479801384743.
- Boyle, J., Mihajlovic, M. and Scott, J. (2010), "HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D", Int. J. Numer. Method. Eng., 82(1), 64-98. https://doi.org/10.1002/nme.2758.
- Brandt, A. (1977), "Multi-level adaptive solutions to boundary-value problems", Math. Comput., 31(138), 333-390. https://doi.org/10.1090/S0025-5718-1977-0431719-X.
- Brandt, A. (1986), "Algebraic multigrid theory: The symmetric case", Appl. Math. Comput., 19(1), 23-56. https://doi.org/10.1016/0096-3003(86)90095-0.
- Brandt, A., McCormick, S. and Ruge, J. (1982), "Algebraic multigrid (AMG) for automatic algorithm design and problem solution", Colorado State University, Fort Collins, FC, USA.
- Brandt, A., McCormick, S. and Ruge, J. (1984), "Algebraic multigrid (AMG) for sparse matrix equations", Cambridge University Press, Cambridge, UK.
- Brezina, M., Tong, C. and Becker, R. (2006), "Parallel algebraic multigrids for structural mechanics", SIAM J. Sci. Comput., 27(5), 1534-1554. https://doi.org/10.1137/040608271.
- Clees, T. and Ganzer, L. (2010), "An efficient algebraic multi-grid solver strategy for adaptive implicit methods in oil-reservoir simulation", SPE J., 15(3), 670-681. https://doi.org/10.2118/105789-PA.
- Clough, R.W. (1960). "The finite element method in plane stress analysis", Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh Pa, September.
- Cremon, M.A., Castelletto, N. and White, J.A. (2020), "Multistage preconditioners for thermal-compositional-reactive flow in porous media", J. Comput. Phys., 418, 109607. https://doi.org/10.1016/j.jcp.2020.109607.
- Erlangga, Y. and Nabben, R. (2009), "Algebraic multilevel krylov methods", SIAM J. Sci. Comput., 31(5), 3417-3437. https://doi.org/10.1137/080731657.
- Falgout, R.D. (2006), "An introduction to algebraic multigrid", Comput. Sci. Eng., 8(6), 24-33. https://doi.org/10.1109/mcse.2006.105.
- Falgout, R.D. (2010), "Multigrid methods", Numer. Linear Algebra Appl., 17(2), 175-178. https://doi.org/10.1002/nla.712.
- Franceschini, A., Paludetto Magri, V.A., Mazzucco, G., Spiezia, N. and Janna, C. (2019), "A robust adaptive algebraic multigrid linear solver for structural mechanics", Comput. Method. Appl. Mech. Eng., 352, 389-416. https://doi.org/10.1016/j.cma.2019.04.034.
- Fujita, K., Horikoshi, M., Ichimura, T., Meadows, L., Nakajima, K., Hori, M. and Maddegedara, L. (2020), "Development of element-by-element kernel algorithms in unstructured finiteelement solvers for many-core wide-SIMD CPUs: Application to earthquake simulation", J. Comput. Sci., 45, 101174. https://doi.org/10.1016/j.jocs.2020.101174.
- Gaspar, F.J. and Rodrigo, C. (2017), "On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics", Comput. Method. Appl. Mech. Eng., 326, 526-540. https://doi.org/10.1016/j.cma.2017.08.025.
- Hackbusch, W. (1985), Multi-grid Methods and Applications, Spring-Verlag Berlin Heidelberg, New York, NY, USA.
- Hadjidimos, A. (1978), "Accelerated overrelaxation method", Math. Comput., 32(141), 149-157. https://doi.org/10.1090/S0025-5718-1978-0483340-6.
- Helou, M. and Kara, S. (2018), "Design, analysis and manufacturing of lattice structures: an overview", Int. J. Comput. Integrated Manuf., 31(3), 243-261. https://doi.org/10.1080/0951192X.2017.1407456.
- Iakymchuk, R., Barreda, M., Wiesenberger, M., Aliaga, J.I. and Quintana-Orti, E.S. (2020), "Reproducibility strategies for parallel preconditioned conjugate gradient", J. Comput. Appl. Math., 371, 112697. https://doi.org/10.1016/j.cam.2019.112697.
- Islam, A.B.M.S. (2020), "Computer aided failure prediction of reinforced concrete beam", Comput. Concrete, 25(1), 67-73. https://doi.org/10.12989/cac.2020.25.1.067.
- Iwamura, C., Costa, F.S., Sbarski, I., Easton, A. and Li, N. (2003), "An efficient algebraic multigrid preconditioned conjugate gradient solver", Comput. Method. Appl. Mech. Eng., 192(20), 2299-2318. https://doi.org/https://doi.org/10.1016/S0045-7825(02)00378-X.
- Jiao, Y.Y., Zhao, Q., Wang, L., Huang, G.H. and Tan, F. (2019), "A hybrid MPI/OpenMP parallel computing model for spherical discontinuous deformation analysis", Comput. Geotech., 106, 217-227. https://doi.org/10.1016/j.compgeo.2018.11.004.
- Kim, J.M., Son, K., Yoo, Y., Lee, D. and Kim, D.Y. (2018), "Identifying risk indicators of building damage due to typhoons: Focusing on cases of South Korea", Sustain., 10(11), 3947. https://doi.org/10.3390/su10113947.
- Koric, S. and Gupta, A. (2016), "Sparse matrix factorization in the implicit finite element method on petascale architecture", Comput. Meth. Appl. Mech. Eng., 302, 281-292. https://doi.org/10.1016/j.cma.2016.01.011.
- Langston, M.H., Harris, M.T., Letourneau, P.D., Lethin, R. and Ezick, J. (2019). "Combinatorial Multigrid: Advanced preconditioners for Ill-Conditioned linear systems", 2019 IEEE High Performance Extreme Computing Conference, Waltham, September.
- Li, H., Li, Z. and Teng, J. (2016), "A dynamic analysis algorithm for RC frames using parallel GPU strategies", Comput. Concrete, 18(5), 1019-1039. https://doi.org/10.12989/cac.2016.18.5.1019.
- Li, J.W., Bose, M., Wyss, M., Wald, D.J., Hutchison, A.A., Clinton, J.F., Wu, Z.L., Jiang, C.S. and Zhou, S.Y. (2020), "Estimating rupture dimensions of three major earthquakes in Sichuan, China, for early warning and rapid loss estimates", Bull. Seismol. Soc. Am., 110(2), 920-936. https://doi.org/10.1785/0120190117.
- Li, M.X. and Wang, G.X. (2018), "Loss assessment of group residential buildings and information management system for wind catastrophe", J. Wind Eng. Ind. Aerodyn., 174, 141-151. https://doi.org/10.1016/j.jweia.2017.12.028.
- Liu, H., Wang, K. and Chen, Z. (2016), "A family of constrained pressure residual preconditioners for parallel reservoir simulations", 23(1), 120-146. https://doi.org/10.1002/nla.2017.
- Lu, X.Z., Han, B., Hori, M., Xiong, C. and Xu, Z. (2014), "A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing", Adv. Eng. Softw., 70, 90-103. https://doi.org/10.1016/j.advengsoft.2014.01.010.
- Mccormick, S. and Ruge, J. (1989), "Algebraic multigrid methods applied to problems in computational structural mechanics", State-of-the-Art Surveys on Computational Mechanics, New York, January.
- Mirfakhraei, S.F., Ahmadi, H.R. and Chan, R. (2020), "Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical)", Smart Struct. Syst., 25(2), 229-240. https://doi.org/10.12989/sss.2020.25.2.229.
- Mishev, I.D., Shaw, J.S. and Lu, P. (2011). "Numerical experiments with AMG solver in reservoir simulation", Proceedings of SPE Reservoir Simulation Symposium, Woodlands, February.
- Mittal, S. and Vetter, J.S. (2015), "A survey of CPU-GPU heterogeneous computing techniques", ACM Comput. Surv., 47(4), 1-35. https://doi.org/10.1145/2788396.
- Moallemi, S. and Pietruszczak, S. (2018), "Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR", Comput. Concrete, 22(1), 1-10. https://doi.org/10.12989/cac.2018.22.1.001.
- Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., Demouth, J., Eaton, J., Layton, S., Markovskiy, N., Reguly, I., Sakharnykh, N., Sellappan, V. and Strzodka, R. (2015), "AmgX: A library for GPU accelerated algebraic multigrid and preconditioned iterative methods", SIAM J. Sci. Comput., 37(5), S602-S626. https://doi.org/10.1137/140980260.
- Notay, Y. (2010), "An aggregation-based algebraic multigrid method", Elect. Transac. Numer. Anal., 37(6), 123-146.
- Ruge, J. (1986), "AMG for problems of elasticity", Appl. Math. Comput., 19(1), 293-309. https://doi.org/10.1016/0096-3003(86)90109-8.
- Ruge, J.W. and Stuben, K. (1987), Algebraic Multigrid, SIAM, Philadelphia, PA, USA.
- Shamsi, J. (2017), "Advancements in GPGPU computing", 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies, Karachi, April.
- Sojka, R., Horak, D., Hapla, V. and Cermak, M. (2018), "The impact of enabling multiple subdomains per MPI process in the TFETI domain decomposition method", Appl. Math. Comput., 319, 586-597. https://doi.org/10.1016/j.amc.2017.07.031.
- Sotoudehnia, E., Shahabian, F. and Sani, A.A. (2019), "An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space", Smart Struct. Syst., 23(1), 45-60. https://doi.org/10.12989/sss.2019.23.1.045.
- Stuben, K. (1999), "Algebraic multigrid (AMG): An introduction with applications, german national research center for information technology", Augustin, Germany.
- Stuben, K. (2001a), "An introduction to algebraic multigrid, german national research centre for information technology", Augustin, Germany.
- Stuben, K. (2001b), "A review of algebraic multigrid", J. Comput. Appl. Math., 128(1), 281-309. https://doi.org/10.1016/B978-0-444-50617-7.50015-X.
- Sun, X. and Jing, X. (2016), "Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure", Mech. Syst. Signal Proc., 66, 723-742. https://doi.org/10.1016/j.ymssp.2015.05.026.
- Tatebe, O. (1993), "The multigrid preconditioned conjugate gradient method", The Sixth Copper Mountain Conference on Multigrid Methods, Colorado, April.
- Tian, R., Zhou, M., Wang, J., Li, Y., An, H., Xu, X., Wen, L., Wang, L., Xu, Q. and Leng, J. (2019), "A challenging dam structural analysis: Large-scale implicit thermo-mechanical coupled contact simulation on Tianhe-II", Comput. Mech., 63(1), 99-119. https://doi.org/10.1007/s00466-018-1586-5.
- Wang, L.J., Deng, Q.C. and Xie, Y.X. (2017), "A new conjugate gradient algorithm for solving dynamic load identification", Struct. Eng. Mech., 64(2), 271-278. https://doi.org/10.12989/sem.2017.64.2.271.
- Wang, Y. and Killough, J.E. (2015), "Solver preconditioning using the combinatorial multilevel method on reservoir simulation", Comput. Geosci., 19(4), 695-708. https://doi.org/10.1007/s10596-015-9485-8.
- Wathen, A.J. (2015), "Preconditioning", Acta Numer., 24, 329-376. https://doi.org/10.1017/S0962492915000021.
- Xiao, S.J., Xu, L.H. and Li, Z.X. (2019), "Seismic performance and damage analysis of RC frame-core tube building with self-centering braces", Soil Dyn. Earthq. Eng., 120, 146-157. https://doi.org/10.1016/j.soildyn.2019.01.029.
- Xu, J. and Zikatanov, L. (2017), "Algebraic multigrid methods", Acta Numer., 26, 591-721. https://doi.org/10.1017/s0962492917000083.
- Xu, L.H., Xiao, S.J. and Lu, X. (2018), "Seismic response analysis of RC frame core-tube building with self-centering braces", Struct. Monit. Maint., 5(2), 189-204. https://doi.org/10.12989/smm.2018.5.2.189.
- Xu, X.W. (2019), "Parallel algebraic multigrid methods: State-of-the art and challenges for extreme-scale applications", J. Numer. Meth. Comput. Appl., 40(4), 243-260. https://doi.org/10.1007/3-540-31619-1_6.
- Xu, X.W., Mo, Z.Y. and An, H.B. (2016), "An adaptive AMG preconditioning strategy for solving large-scale sparse linear systems", Scientia Sinica Informationis, 46(10), 1411-1420. https://doi.org/10.1360/N112016-00074.
- Yamaguchi, T., Kawase, Y., Nagase, A. and Ishimura, S. (2019), "Performance evaluation of 3-D hybrid parallel finite element method by MPI/OpenMP", J. Japan Soc. Appl. Elect. Mech., 27(1), 85-90. https://doi.org/10.14243/jsaem.27.85.
- Zhao, B., Liu, Y., Goh, S. and Lee, F. (2016), "Parallel finite element analysis of seismic soil structure interaction using a PC cluster", Comput. Geotech., 80, 167-177. https://doi.org/10.1016/j.compgeo.2016.07.006.