DOI QR코드

DOI QR Code

Experimental study on long-term behavior of prestressed steel I-beam-concrete composite beams

  • Sung, Deokyong (Department of Civil and Railroad Engineering, Daewon University College) ;
  • Hong, Seongwon (Department of Safety Engineering, Korea National University of Transportation)
  • Received : 2021.04.13
  • Accepted : 2022.03.07
  • Published : 2022.03.10

Abstract

To investigate and predict the long-term time-dependent behavior, such as creep, shrinkage, and relaxation of PS strands, and prestress loss in prestressed steel-concrete composite beams, named Precom, full-scale tests were conducted and the collected data were compared with those obtained from the two proposed analytical models. The combined effective modulus method (EMM)-empirical model proposed with a flowchart considered the creep effect to determine the prestress loss. Conversely, the age-adjusted effective modulus method (AEMM) with CEB-FIP equation was developed to account for the concrete aging. The results indicated that the AEMM with CEB-FIP model predicts the long-term behavior of Precom effectively.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A4A2001964) and was also supported by the Young Researcher Program through the National Research Foundation of Korea(NRF) funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning) (2021R1C1C1010087). The views expressed are the authors and do not necessarily represent those of the sponsors.

References

  1. AASHTO (2002), Standard Specifications for Highway Bridges, American Association of State Highway and Transportation Officials, Washington, D.C., U.S.A.
  2. ACI 209R-92 (1997), Prediction of Creep, Shrinkage and Temperature Effects on Concrete Structures, American Concrete Institute; Detroit, U.S.A.
  3. Ali, A.H., Mohamed, H.M., Benmokrane, B. and ElSafty, A. (2019), "Theory-based approaches and microstructural analysis to evaluate the service life-retention of stressed carbon fiber composite strands for concrete bridge applications", Compos. B Eng., 165, 279-292. https://doi.org/10.1016/j.compositesb.2018.11.083.
  4. Amadio, C. and Fragiacomo, M. (1997), "Simplified approach to evaluate creep and shrinkage effects in steel-concrete composite beams", J. Struct. Eng, 123(9), 1153-1162. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1153).
  5. Arockiasamy, M., Chidambaram, S., Amer, A. and Shahawy, M. (2000), "Time-dependent deformations of concrete beams reinforced with CFRP bars," Compos. B Eng., 31(6-7), 577-592. https://doi.org/10.1016/S1359-8368(99)00045-1.
  6. Au, F.T.K. and Si, X.T. (2011), "Accurate time-dependent analysis of concrete bridges considering concrete creep, concrete shrinkage and cable relaxation", Eng. Struct., 32(1), 118-126. https://doi.org/10.1016/j.engstruct.2010.09.024.
  7. Ayyub, B.M., Sohn, Y.G. and Saadatmanesh, H. (1990), "Prestressed composite girders under positive moment," J. Struct. Eng., 116(11), 2931-2951. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(2931).
  8. Ayyub, B.M., Sohn, Y.G. and Saadatmanesh, H. (1992a), "Prestressed composite girders. I: Experimental study for negative moment", J. Struct. Eng., 118(10), 2743-2762. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:10(2743).
  9. Ayyub, B.M., Sohn, Y.G. and Saadatmanesh, H. (1992b), "Prestressed composite girders. II: Analytical study for negative moment", J. Struct. Eng., 118(10), 2763-2782. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:10(2763).
  10. Bae, D.B. and Lee, K.M. (2004), "Behavior of preflex beam in manufacturing process", J. Civ. Eng., 8(1), 111-115.
  11. Bae, D.B., Youn, S.G. and Ham, S.H. (2004), "Long-term behavior of steel-concrete composite girders due to concrete shrinkage", J. Korean Soc. Steel Constr., 16(6), 807-818.
  12. Bradford, M.A. (2010), "Generic modelling of composite steel-concrete slabs subjected to shrinkage, creep and thermal strains including partial interaction", Eng. Struct., 32(5),1456-1465. https://doi.org/10.1016/j.engstruct.2010.01.024.
  13. Chami, A.G., Theriault, M. and Neale, K.W. (2009), "Creep behaviour of CFRP-strengthened reinforced concrete beams", Constr. Build. Mater., 23(4), 1640-1652. https://doi.org/10.1016/j.conbuildmat.2007.09.006.
  14. Chen, S. and Gu, P. (2005), "Load carrying capacity of composite beams prestressed with external tendons under positive moment", J. Constr. Steel Res., 61(4), 515-530. https://doi.org/10.1016/j.jcsr.2004.09.004.
  15. Dezi, L., Leoni, G. and Tarantino, A.M. (1998), "Creep and shrinkage analysis of composite beams", Prog. Struct. Eng Mater., 1(2), 170-177. https://doi.org/10.1002/pse.2260010209.
  16. Echigo, S., Tachibana, Y. and Kitajima, A. (1998), "New type hybrid structure and practical analysis method of creep and shrinkage", Constr. Build. Mater., 12(2-3), 93-103. https://doi.org/10.1016/S0950-0618(97)00011-1.
  17. Eurocode 2 (1991), Design of Concrete Structures. Part 1.1: General Rules and Rules for Buildings, European Committee for Standardization; Brussels, Belgium.
  18. Eurocode 2 (2004a), Design of Concrete Structures. Part 1.1: General Rules and Rules for Buildings, European Committee for Standardization; Brussels, Belgium.
  19. Eurocode 2 (2004b), Design of Concrete Structures. Part 2: Concrete Bridges-Design and Detailing Rules, European Committee for Standardization; Brussels, Belgium.
  20. Garas, V.Y., Kurtis, K.E. and Kahn, L.F. (2012), "Creep of UHPC in tension and compression: Effect of thermal treatment", Cem. Concr. Compos., 34(4), 493-502. https://doi.org/10.1016/j.cemconcomp.2011.12.002.
  21. Gilbert, R.I. (1988), Time Effects in Concrete Structures, Elsevier, Amsterdam, NY, U.S.A.
  22. Gilbert, R.I. (1989), "Time-dependent analysis of composite steel-concrete sections", J. Struct. Eng, 115(11), 2687-2705. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2687).
  23. Guo, T., Chen, Z., Lu, S. and Yao, R. (2018), "Monitoring and analysis of long-term prestress losses in post-tensioned concrete beams", Measurement, 122, 573-581. https://doi.org/10.1016/j.measurement.2017.07.057.
  24. He, Z.H., Zhan, P.M., Du, S.G., Liu, B.J. and Yuan, W.B. (2019), "Creep behavior of concrete containing glass powder", Compos. B Eng., 166, 13-20. https://doi.org/10.1016/j.compositesb.2018.11.133.
  25. Heo, B.W., Kwak, M.K., Bae, K.W. and Jeong, S.M. (2007), "Flexural capacity of profiled steel composite beams: deep deck plate", J. Korean Soc. Steel Constr., 19(3), 247-258.
  26. Huang, Y.Q., Fu, J.Y., Liu, A.R., Pi, Y.L., Wu, D. and Gao, W. (2019), "Effect of concrete creep on dynamic stability behavior of slender concrete-filled steel tubular column", Compos. B Eng., 157, 173-181. https://doi.org/10.1016/j.compositesb.2018.08.117.
  27. Kim, J.H., Park, K.H., Hwang, Y.K., Choi, Y.M. and Cho, H.N. (2002), "Experimental study for the development of steelconfined concrete girder", J. Korean Soc. Steel Constr., 14(5), 593-602.
  28. Kim, J.I., Kim, D.K., Lee, J.H. and Kim, J.H. (2009), "Static behavior of concrete-filled and tied steel tubular arch (CFTA) girder", J. Korean Inst. Struct. Maint. Insp., 13(3), 225-231.
  29. Kim, K.S., Lee, D.H., Choi, S.M., Choi, Y.H. and Jung, S.H. (2011), "Flexural behavior of prestressed composite beams with corrugated web: Part I. Development and analysis", Compos. B Eng., 42(6), 1603-1616. https://doi.org/10.1016/j.compositesb.2011.04.020.
  30. Korea Rail Network Authority (2014), Design Specifications for Railway: Roadbed, Deajeon, Korea.
  31. Korea Road & Transportation Association (2010), Design Specifications for Highway Bridges, Seoul, Korea.
  32. Lorenc, W. and Kubica, E. (2006), "Behavior of composite beams prestressed with external tendons: Experimental study", J. Constr. Steel Res., 62(12), 1353-1366. https://doi.org/10.1016/j.jcsr.2006.01.007.
  33. Lou, T. and Karavasilis, T.L. (2018), "Time-dependent assessment and deflection prediction of prestressed concrete beams with unboned CFRP tendons", Compos. Struct., 194, 365-376. https://doi.org/10.1016/j.compstruct.2018.04.013.
  34. Lou, T., Wu, S., Karavasilis, T.L. and Chen, B. (2021). "Long-term deflection prediction in steel-concrete composite beams", Steel Compos. Struct., 39(1), 21-33. http://dx.doi.org/10.12989/scs.2021.39.1.021.
  35. MC-90 (1993), CEB-FIB MODEL CODE 1990, Thomas Telford; London, U.K.
  36. Mari, A.R., Mirambell, E. and Estrada, I. (2003), "Effects of construction process and slab prestressing on the serviceability behavior of composite bridge," J. Constr. Steel Res. 59(2), 135-163. http://doi.org/10.1016/S0143-974X(02)00029-9.
  37. Mirambell, E., Bonilla, J., Bezerra, L.M. and Clero, B. (2021), "Numerical study on the deflections of steel-concrete composite beams with partial interaction", Steel Compos. Struct., 38(1), 67-78. http://dx.doi.org/10.12989/scs.2021.38.1.067.
  38. Morano, S.G. and Mannini, C. (2006), "Preflex beams: A method of calculation of creep and shrinkage effects", J. Bridge Eng., 11(1), 48-58. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:1(48).
  39. Muller, M., Toussaint, E., Destrebecq, J.F. and Grediac, M. (2007), "Investigation into the time-dependent behaviour of reinforced concrete specimens strengthened with externally bonded CFRPplates", Compos. B. Eng, 38(4), 417-428. https://doi.org/10.1016/j.compositesb.2006.10.001.
  40. Mullett, D.L. (1998), Composite Floor Systems, Blackwell Science Ltd, Oxford, Oxfordshire, U.K.
  41. Salmon, C.G. and Johnson, J.E. (1996), Steel Structures Design and Behavior, Harpercollins, New York, NY, U.S.A.
  42. Salvatore, G.M., and Claudio, M. (2006), "Preflex beams: Method of calculation of creep and shrinkage effects", J. Bridges Eng, 11(1), 48-58. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:1(48).
  43. Soudki, K., El-Salakawy, E. and Craig, B. (2007), "Behavior of CFRP strengthened reinforced concrete beams in corrosive environment", J. Compos. Constr., 11(3), 291-298. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:3(291).
  44. Subhani, M., Kabir, M.I. and Al-Ameri, R. (2020), "Strengthening of steel-concrete composite beams with composite slab", Steel Compos. Struct., 34(1), 91-105. http://dx.doi.org/10.12989/scs.2020.34.1.091.
  45. Tormen, A.F., Pravia, Z.M.C., Ramires, F.B. and Kripka, M. (2020), "Optimization of steel-concrete composite beams considering cost and environmental impact", Steel Compos. Struct., 34(3), 409-421. http://dx.doi.org/10.12989/scs.2020.34.3.409.
  46. Wang, Y. and Shao, Y. (2018), "Stress analysis of a new steel-concrete composite I-girder", Steel Compos. Struct., 28(1), 51-61. http://dx.doi.org/10.12989/scs.2018.28.1.051.
  47. Wu, D., Gao, W., Feng, J. and Luo, K. (2016), "Structural behavior evolution of composite steel-concrete curved structure with uncertain creep and shrinkage effects", Compos. B Eng., 86(1), 261-272. https://doi.org/10.1016/j.compositesb.2015.10.004.
  48. Yang, I.H. (2007), "Uncertainty and sensitivity analysis of time-dependent effects in concrete structures", Eng. Struct., 29(7), 1366-1374. https://doi.org/10.1016/j.engstruct.2006.07.015.