References
- Ait Atmane, R., Mahmoudi, N., Bennai R., Ait Atmane, H. and Tounsi, A. (2021), "Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory", Steel Compos. Struct., 39(1), 95-107. https://doi.org/10.12989/scs.2021.39.1.095.
- Akbas, S.D. (2018), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. http://dx.doi.org/10.12989/sem.2018.67.4.337.
- Al-Waily, M. (2015), "Analytical and numerical thermal buckling analysis investigation of unidirectional and woven reinforcement composite plate structural", Int. J. Energy, Environ. Economics, 6(2), License CC BY 4.0.
- Arefi, M., and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.615.
- Avcar, M., (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel and Composite Structures, 30(6), 95-107. 603-615. http://dx.doi.org/10.12989/scs.2019.30.6.603.
- Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2020), "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov", Steel Compos. Struct., 36(6), 671-687. https://doi.org/10.12989/scs.2020.36.6.671.
- Bodaghi, M. and Saidi, A.R. (2011), "Thermoelastic buckling behavior of thick functionally graded rectangular plates", Archive Appl. Mech., 81(11), 1555-1572. https://doi.org/10.1007/s00419-010-0501-0.
- Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2012), "Thermal Buckling of Functionally Graded Plates According to a Four-Variable Refined Plate Theory", J. Therm. Stress, 35(1), 677-694. https://doi.org/10.1080/01495739.2012.688665.
- Ebrahimi, F. and Jafari, A. (2016), "A Higher-Order Thermomechanical Vibration Analysis of Temperature-Dependent FGM Beams with Porosities", J. Eng., 9561504. https://doi.org/10.1155/2016/9561504.
- Ebrahimi, F., and Seyfi, A., (2020), "Studying propagation of wave in metal foam cylindrical shells with graded porosities resting on variable elastic substrate", Engineering with Computers. https://doi.org/10.1007/s00366-020-01069-w.
- Ebrahimi, F., Dabbagh, A. and Rastgoo, A. (2019), "Vibration analysis of porous metal foam shells rested on an elastic substrate", J. Strain Anal. Eng. Des., 54(3), 199-208. https://doi.org/10.1177/0309324719852555.
- Fazzolari, F.A., (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Composites Part B: Engineering, 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
- Fenjan, R.M. Ahmed, R.A. and Faleh, N.M. (2021), "Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading", Struct. Eng. Mech., 78(1), 15-22. http://dx.doi.org/10.12989/sem.2021.78.1.015.
- Ghadiri Rad, M.H., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077.
- Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., 34(2), 227-239. https://doi.org/10.12989/scs.2020.34.2.227.
- Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. http://dx.doi.org/10.12989/scs.2021.38.1.001.
- Jahwari, F.A. and Naguib, H.E. (2016), "Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution", Appl. Mathem. Modelling, 40(3), 2190-2205. https://doi.org/10.1016/j.apm.2015.09.038.
- Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626.
- Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress, 25(1), 603-625. https://doi.org/10.1080/01495730290074333.
- Jena, S.K., Chakraverty, S. and Malikan, M. (2021), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation", Eng. Comput., 37, 3569-3589. https://doi.org/10.1007/s00366-020-01018-7.
- Khaniki, H.B., Ghayesh, M.H., Hussain, S. and Amabili, M. (2020), "Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions", Eng. Comput., https://doi.org/10.1007/s00366-020-01208-3.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. http://dx.doi.org/10.12989/scs.2013.15.5.481.
- Lanhe, W.,= (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64(2), 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004.
- Li, Y.S., Liu, B.L. and Zhang, J.J. (2021), "Hygro-thermal buckling of porous FG nanobeams considering surface effects", Struct. Eng. Mech., 79(3), 359-371. http://dx.doi.org/10.12989/sem.2021.79.3.359.
- Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36(1), 47-62. https://doi.org/10.12989/scs.2020.36.1.047.
- Long, V.T. and Tung, H.V. (2021), "Thermal nonlinear buckling of shear deformable functionally graded cylindrical shells with porosities, AIAA J. 1-9. https://doi.org/10.2514/1.J060026.
- Matsunaga, H., (2009), "Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory", Composite Structures, 90(1), 76-86. https://doi.org/10.1016/j.compstruct.2009.02.004.
- Mohieddin Ghomshei, M. (2020) "A numerical study on the thermal buckling of variable thickness Mindlin circular FGM plate on a two-parameter foundation", Mech. Res. Commun., 108, 103577. https://doi.org/10.1016/j.mechrescom.2020.103577.
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Advan. Nano Res., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059.
- Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9.
- Rahmani, M., Mohammadi, Y. and Kakavand, F., (2019), "Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings", Steel Compos. Struct., 32(2), 239-252. http://dx.doi.org/10.12989/scs.2019.32.2.239.
- Samsam Shariat, B.A. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solids Struct., 43(14), 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aeros. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of two-directionally porous beam", Aeros. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.
- Trabelsi, S., Zghal, S. and Dammak, F. (2020), "Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures", J. Brazil. Soc. Mech. Sci. Eng., 42(5), 233. https://doi.org/10.1007/s40430-020-02314-5.
- Vel, S.S. and Batra, R.C. (2002), "Exact solution for thermoelastic deformations of functionally graded thick rectangular plates", AIAA J., 40(7), 1421-1433. https://doi.org/10.2514/2.1805.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol, 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2016), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. http://dx.doi.org/10.12989/scs.2014.17.5.753.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell\'s shell theory", Steel Compos. Struct., 35(2), 249-260. http://dx.doi.org/10.12989/scs.2020.35.2.249.
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
- Zenkour, A.M. and Mashat, D.S. (2010), "Thermal buckling analysis of ceramic-metal functionally graded plates", Nat. Sci, 2(9), 968-978. http://dx.doi.org/10.4236/ns.2010.29118.
- Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.