DOI QR코드

DOI QR Code

막 분리와 흡착 과정을 통한 해수로부터의 주요 광물 회수: 리뷰

Recovery of Valuable Minerals from Sea Water by Membrane Separation and Adsorption Process: A Review

  • 전성수 (연세대학교 언더우드학부 융합과학공학부) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Jeon, Sungsu (Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 투고 : 2022.02.15
  • 심사 : 2022.02.22
  • 발행 : 2022.02.28

초록

세계적인 에너지 수요의 증가는 통제할 수 없는 환경 오염을 야기하고 있다. 화석 연료에 대한 수요와 그로 인한 탄소 배출이 지구 온난화와 기후 변화로 이어진 것이다. 핵에너지는 청정 에너지를 생산하는 대체 자원이지만 핵연료 채굴은 유해한 화학물질과 관련이 있다. 반면에 막 분리 과정을 통해 바닷물에서 중요 광물을 채굴하는 것은 효율적이며 친환경적이다. 분리와 흡착을 통해 해수로부터 주요 광물을 채굴하는 것은 또 다른 효율적인 과정이다. 희토류 원소에서 악티늄족을 회수하는 것은 매우 어렵고 고비용의 과정이다. 압력 기반 막 분리 과정은 친환경적일 뿐만 아니라 경제적으로 실현가능한 과정이기도 하다. 본 리뷰에서 다루는 막 공정에는 폴리에테르 설폰, 폴리아미드, 폴리이미드, 폴리아미독신 및 하이브리드 막이 있다. 또한 흡착 공정의 경우, 주로 아미독심 종류의 흡착제가 논의될 것이다.

Ever increasing global energy demand gives rise to uncontrollable environmental pollution. Demand on fossil fuel and consequent carbon emission leads to global warming and climate change. Nuclear energy is an alternative source to generate clean energy but mining of nuclear fuel is associated with harmful chemicals. Mining of valuable minerals from sea water by membrane separation process is a cost effective along with environmental friendly process. Separation and adsorption based mining of valuable minerals from sea water are another efficient process. Recovery of actinides from rare earth elements are very challenging and expensive process. Pressure driven membrane separation process is economically more viable along with environmental process. In this review membrane separation process are based on polyether sulfone, polyamide, polyimide, polyamidoxine and hybrid membranes. In case of adsorption process, mainly amidoxime kind of adsorbent are discussed.

키워드

참고문헌

  1. B. Zheng, X. Lin, X. Zhang, D. Wu, and K. Matyjaszewski, "Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage", Adv. Funct. Mater, 30, 1907006 (2019). https://doi.org/10.1002/adfm.201907006
  2. J. Wang and S. Zhuang, "Extraction and adsorption of U(VI) from aqueous solution using affinity ligand-based technologies: an overview", Rev. Environ. Sci. Biotechnol., 18, 437 (2019). https://doi.org/10.1007/s11157-019-09507-y
  3. P. Loganathan, G. Naidu, and S. Vigneswaran, "Mining valuable minerals from seawater: A critical review", Environ. Sci. Water Res. Technol., 3, 37 (2017). https://doi.org/10.1039/C6EW00268D
  4. A. R. Katritzky, L. Huang, M. Chahar, R. Sakhuja, and C. D. Hall, "The chemistry of N-hydroxyamidoximes, N-aminoamidoximes, and hydrazidines", Chem. Rev., 112, 1633 (2012). https://doi.org/10.1021/cr200076q
  5. D. S. Bolotin, V. A. Rassadin, N. A. Bokach, and V. Y. Kukushkin, "Metal-involving generation of aminoheterocycles from N-substituted cyanamides: Toward sustainable chemistry (a Minireview)", Inorg. Chim. Acta, 455, 446 (2017). https://doi.org/10.1016/j.ica.2016.02.025
  6. D. S. Bolotin, N. A. Bokach, and V. Y. Kukushkin, "Coordination chemistry and metal-involving reactions of amidoximes: Relevance to the chemistry of oximes and oxime ligands", Coordination Chemistry Reviews, 313, 62 (2016). https://doi.org/10.1016/j.ccr.2015.10.005
  7. L. Y. Yuan, G. Gao, C. Q. Feng, Z. F. Chai, W. and Q. Shi, "A new family of actinide sorbents with more open porous structure: Fibrous functionalized silica microspheres", Chemical Engineering Journal, 385, 123892 (2020). https://doi.org/10.1016/j.cej.2019.123892
  8. G. Xue, F. Yurun, M. Li, G. Dezhi, J. Jie, Y. Jincheng, S. Haibin, G. Hongyu, and Z. Yujun, "Phosphoryl functionalized mesoporous silica for uranium adsorption", Appl Surf Sci, 402, 53 (2017). https://doi.org/10.1016/j.apsusc.2017.01.050
  9. Y. Wei, M. Rakhatkyzy, K. A. M. Salih, K. Wang, M. F. Hamza, and E. Guibal, "Controlled bi-functionalization of silica microbeads through grafting of amidoxime/methacrylic acid for Sr(II) enhanced sorption", Chem. Eng. J., 402, 125220 (2020). https://doi.org/10.1016/j.cej.2020.125220
  10. H. J. Liu, P. F. Jing, X. Y. Liu, K. J. Du, and Y. K. Sun, "Synthesis of β-cyclodextrin functionalized silica gel and its application for adsorption of uranium(VI)", J. Radioanal. Nucl. Chem., 310, 263 (2016). https://doi.org/10.1007/s10967-016-4792-7
  11. E. S. Dragan, D. Humelnicu, M. Ignat, and C. D. Varganici, "Superadsorbents for strontium and cesium removal enriched in amidoxime by a homo-IPN strategy connected with porous silica texture", ACS Appl. Mater. Interfaces, 12, 44622 (2020). https://doi.org/10.1021/acsami.0c10983
  12. H. Chen, D. Shao, J. Li, and X. Wang, "The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide", Chem. Eng. J., 254, 623 (2014). https://doi.org/10.1016/j.cej.2014.05.091
  13. Y. Wang, Y. Zhang, Q. Li, Y. Li, L. Cao, and W. Li, "Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater", Carbohydr Polym, 245, 116627 (2020). https://doi.org/10.1016/j.carbpol.2020.116627
  14. H. Takahashi, Y. Izumoto, T. Matsuyama, and H. Yoshii, "Trace determination of uranium preconcentrated using graphene oxide by total reflection X-ray fluorescence spectrometry", X-Ray Spectrom., 48, 366 (2019). https://doi.org/10.1002/xrs.3032
  15. B. Satilmis, T. Isik, M. M. Demir, and T. Uyar, "Amidoxime functionalized polymers of intrinsic microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water", Appl Surf Sci, 467-468, 648 (2019). https://doi.org/10.1016/j.apsusc.2018.10.210
  16. S. Das, A. K. Pandey, A. Athawale, V. Kumar, Y. K. Bhardwaj, S. Sabharwal, and V. K. Manchanda, "Chemical aspects of uranium recovery from seawater by amidoximated electron-beam-grafted polypropylene membranes", Desalination, 232, 243 (2008). https://doi.org/10.1016/j.desal.2007.09.019
  17. K. H. Lee, B-M. Kil, C-H. Rew, and J-J. Hwang, "Removal of alkali metal ion and chlorine ion using the ion exchange resin", Membr. J., 30, 276 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.276
  18. D. Seok, Y. Kim, and H Sohn, "Synthesis of Fe3O4/porous carbon composite for efficient Cu2+ ions removal", Membr. J., 29, 308 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.308
  19. X. H. Xiong, Y. Tao, Z. W. Yu, L. X. Yang, L. J. Sun, Y.L. Fan, and F. Luo, "Selective extraction of thorium from uranium and rare earth elements using sulfonated covalent organic framework and its membrane derivate", Chem. Eng. J., 384, 123240 (2020). https://doi.org/10.1016/j.cej.2019.123240
  20. P. Suresh and C. E. Duval, "Poly(acid)-functionalized membranes to sequester uranium from seawater", Ind. Eng. Chem. Res., 59, 12212 (2020). https://doi.org/10.1021/acs.iecr.0c01090
  21. S. Yang, Y. Cao, T. Wang, S. Cai, M. Xu, W. Lu, and D. Hua, "Positively charged conjugated microporous polymers with antibiofouling activity for ultrafast and highly selective uranium extraction from seawater", Environ. Res., 183, 109214 (2020). https://doi.org/10.1016/j.envres.2020.109214
  22. Y. Gao, Q. Zhang, Y. Lv, S. Wang, M. Men, H. Kobayashi, Z. Xu, and Y. Wang, "Peptide-carbon hybrid membranes for highly efficient and selective extraction of actinides from rare earth elements", J. Mater. Chem. A, 9, 14422 (2021). https://doi.org/10.1039/D1TA03549E
  23. W. Luo, G. Xiao, F. Tian, J. J. Richardson, Y. Wang, J. Zhou, J. Guo, X. Liao, and B. Shi, "Engineering robust metal-phenolic network membranes for uranium extraction from seawater", Energy Environ. Sci., 12, 607 (2019). https://doi.org/10.1039/c8ee01438h
  24. Y. Sun, R. Liu, S. Wen, J. Wang, L. Chen, B. Yan, S. Peng, C. Ma, X. Cao, C. Ma, G. Duan, H. Wang, S. Shi, Y. Yuan, and N. Wang, "Antibiofouling ultrathin poly(amidoxime) membrane for enhanced U(VI) recovery from wastewater and seawater", ACS Appl. Mater. Interfaces, 13, 21272 (2021). https://doi.org/10.1021/acsami.1c02882
  25. L. Yang, Y. Qian, X. Y. Kong, M. Si, Y. Zhao, B. Niu, X. Zhao, Y. Wei, L. Jiang, and L. Wen, "Specific recognition of uranyl ion employing a functionalized nanochannel platform for dealing with radioactive contamination", ACS Appl. Mater. Interfaces, 12, 3854 (2020). https://doi.org/10.1021/acsami.9b19544
  26. Z. Zhao, X. Li, Y. Chai, Z. Hua, Y. Xiao, and Y. Yang, "Adsorption performances and mechanisms of amidoxime resin toward gallium(III) and vanadium(V) from bayer liquor", ACS Sustainable Chem. Eng., 4, 53 (2016). https://doi.org/10.1021/acssuschemeng.5b00307
  27. M. F. Hamza, J. C. Roux, and E. Guibal, "Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles", Chem. Eng. J., 344, 124 (2018). https://doi.org/10.1016/j.cej.2018.03.029
  28. S. P. Kelley, P. S. Barber, P. H. K. Mullins, and R. D. Rogers, "Structural clues to UO22+/VO2+ competition in seawater extraction using amidoxime-based extractants", Chem. Commun., 50, 12504 (2014). https://doi.org/10.1039/C4CC06370H
  29. L. J. Kuo, G. A. Gill, C. Tsouris, L. Rao, H. B. Pan, C. M. Wai, C. J. Janke, J. E. Strivens, J. R. Wood, N. Schlafer, and E. K. D'Alessandro, "Temperature dependence of uranium and vanadium adsorption on amidoxime-based adsorbents in natural seawater", ChemistrySelect, 3, 843 (2018). https://doi.org/10.1002/slct.201701895
  30. Y. Oyola and S. Dai, "High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater", Dalton Transactions, 45, 8824 (2016). https://doi.org/10.1039/c6dt01114d