DOI QR코드

DOI QR Code

Neural Organoids, a Versatile Model for Neuroscience

  • Lee, Ju-Hyun (Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine) ;
  • Sun, Woong (Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine)
  • Received : 2021.11.11
  • Accepted : 2021.12.21
  • Published : 2022.02.28

Abstract

Three-dimensional cultures of human neural tissue/organlike structures in vitro can be achieved by mimicking the developmental processes occurring in vivo. Rapid progress in the field of neural organoids has fueled the hope (and hype) for improved understanding of brain development and functions, modeling of neural diseases, discovery of new drugs, and supply of surrogate sources of transplantation. In this short review, we summarize the state-of-the-art applications of this fascinating tool in various research fields and discuss the reality of the technique hoping that the current limitations will soon be overcome by the efforts of ingenious researchers.

Keywords

Acknowledgement

This work was supported by the Brain Research Program through the National Research Foundation (NRF), which is funded by the Korean Ministry of Science, ICT & Future Planning (NRF-2021M3E5D9021368).

References

  1. Adams, R.H. and Eichmann, A. (2010). Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2, a001875. https://doi.org/10.1101/cshperspect.a001875
  2. Amin, N.D. and Pasca, S.P. (2018). Building models of brain disorders with three-dimensional organoids. Neuron 100, 389-405. https://doi.org/10.1016/j.neuron.2018.10.007
  3. Amiri, A., Coppola, G., Scuderi, S., Wu, F., Roychowdhury, T., Liu, F., Pochareddy, S., Shin, Y., Safi, A., Song, L., et al. (2018). Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362, eaat6720. https://doi.org/10.1126/science.aat6720
  4. Andersen, J., Revah, O., Miura, Y., Thom, N., Amin, N.D., Kelley, K.W., Singh, M., Chen, X., Thete, M.V., Walczak, E.M., et al. (2020). Generation of functional human 3D cortico-motor assembloids. Cell 183, 1913-1929.e26. https://doi.org/10.1016/j.cell.2020.11.017
  5. Bagley, J.A., Reumann, D., Bian, S., Levi-Strauss, J., and Knoblich, J.A. (2017). Fused cerebral organoids model interactions between brain regions. Nat. Methods 14, 743-751. https://doi.org/10.1038/nmeth.4304
  6. Barre-Sinoussi, F. and Montagutelli, X. (2015). Animal models are essential to biological research: issues and perspectives. Future Sci. OA 1, FSO63. https://doi.org/10.4155/fso.15.63
  7. Benito-Kwiecinski, S., Giandomenico, S.L., Sutcliffe, M., Riis, E.S., Freire- Pritchett, P., Kelava, I., Wunderlich, S., Martin, U., Wray, G.A., McDole, K., et al. (2021). An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184, 2084-2102.e19. https://doi.org/10.1016/j.cell.2021.02.050
  8. Bershteyn, M., Nowakowski, T.J., Pollen, A.A., Di Lullo, E., Nene, A., Wynshaw-Boris, A., and Kriegstein, A.R. (2017). Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20, 435-449.e4. https://doi.org/10.1016/j.stem.2016.12.007
  9. Bertacchi, M., Romano, A.L., Loubat, A., Tran Mau-Them, F., Willems, M., Faivre, L., Khau van Kien, P., Perrin, L., Devillard, F., Sorlin, A., et al. (2020). NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. EMBO J. 39, e104163. https://doi.org/10.15252/embj.2019104163
  10. Bhaduri, A., Andrews, M.G., Leon, W.M., Jung, D., Shin, D., Allen, D., Jung, D., Schmunk, G., Haeussler, M., Salma, J., et al. (2020). Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142-148. https://doi.org/10.1038/s41586-020-1962-0
  11. Birey, F., Andersen, J., Makinson, C.D., Islam, S., Wei, W., Huber, N., Fan, H.C., Metzler, K.R.C., Panagiotakos, G., Thom, N., et al. (2017). Assembly of functionally integrated human forebrain spheroids. Nature 545, 54-59. https://doi.org/10.1038/nature22330
  12. Brandenberg, N., Hoehnel, S., Kuttler, F., Homicsko, K., Ceroni, C., Ringel, T., Gjorevski, N., Schwank, G., Coukos, G., Turcatti, G., et al. (2020). Highthroughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat. Biomed. Eng. 4, 863-874. https://doi.org/10.1038/s41551-020-0565-2
  13. Brassard, J.A. and Lutolf, M.P. (2019). Engineering stem cell selforganization to build better organoids. Cell Stem Cell 24, 860-876. https://doi.org/10.1016/j.stem.2019.05.005
  14. Cederquist, G.Y., Asciolla, J.J., Tchieu, J., Walsh, R.M., Cornacchia, D., Resh, M.D., and Studer, L. (2019). Specification of positional identity in forebrain organoids. Nat. Biotechnol. 37, 436-444. https://doi.org/10.1038/s41587-019-0085-3
  15. Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., and Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275-280. https://doi.org/10.1038/nbt.1529
  16. Cho, A.N., Jin, Y., An, Y., Kim, J., Choi, Y.S., Lee, J.S., Kim, J., Choi, W.Y., Koo, D.J., Yu, W., et al. (2021). Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat. Commun. 12, 4730. https://doi.org/10.1038/s41467-021-24775-5
  17. Costa, E.C., Moreira, A.F., de Melo-Diogo, D., Gaspar, V.M., Carvalho, M.P., and Correia, I.J. (2016). 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol. Adv. 34, 1427-1441. https://doi.org/10.1016/j.biotechadv.2016.11.002
  18. Das, S., Ramakrishna, S., and Kim, K.S. (2020). Critical roles of deubiquitinating enzymes in the nervous system and neurodegenerative disorders. Mol. Cells 43, 203-214. https://doi.org/10.14348/molcells.2020.2289
  19. Denham, M., Hasegawa, K., Menheniott, T., Rollo, B., Zhang, D., Hough, S., Alshawaf, A., Febbraro, F., Ighaniyan, S., Leung, J., et al. (2015). Multipotent caudal neural progenitors derived from human pluripotent stem cells that give rise to lineages of the central and peripheral nervous system. Stem Cells 33, 1759-1770. https://doi.org/10.1002/stem.1991
  20. Di Lullo, E. and Kriegstein, A.R. (2017). The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573-584. https://doi.org/10.1038/nrn.2017.107
  21. Duval, K., Grover, H., Han, L.H., Mou, Y., Pegoraro, A.F., Fredberg, J., and Chen, Z. (2017). Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 32, 266-277. https://doi.org/10.1152/physiol.00036.2016
  22. Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., Wataya, T., Nishiyama, A., Muguruma, K., and Sasai, Y. (2008). Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519-532. https://doi.org/10.1016/j.stem.2008.09.002
  23. Eura, N., Matsui, T.K., Luginbuhl, J., Matsubayashi, M., Nanaura, H., Shiota, T., Kinugawa, K., Iguchi, N., Kiriyama, T., Zheng, C., et al. (2020). Brainstem organoids from human pluripotent stem cells. Front. Neurosci. 14, 538. https://doi.org/10.3389/fnins.2020.00538
  24. Fatehullah, A., Tan, S.H., and Barker, N. (2016). Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246-254. https://doi.org/10.1038/ncb3312
  25. Gordon, A., Yoon, S.J., Tran, S.S., Makinson, C.D., Park, J.Y., Andersen, J., Valencia, A.M., Horvath, S., Xiao, X., Huguenard, J.R., et al. (2021). Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331-342. https://doi.org/10.1038/s41593-021-00802-y
  26. Gouti, M., Tsakiridis, A., Wymeersch, F.J., Huang, Y., Kleinjung, J., Wilson, V., and Briscoe, J. (2014). In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 12, e1001937. https://doi.org/10.1371/journal.pbio.1001937
  27. Hor, J.H., Soh, E.S.Y., Tan, L.Y., Lim, V.J.W., Santosa, M.M., Winanto, Ho, B.X., Fan, Y., Soh, B.S., and Ng, S.Y. (2018). Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death Dis. 9, 1100. https://doi.org/10.1038/s41419-018-1081-0
  28. Jack, C.R., Jr., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Petersen, R.C., and Trojanowski, J.Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119-128. https://doi.org/10.1016/S1474-4422(09)70299-6
  29. James, O.G., Selvaraj, B.T., Magnani, D., Burr, K., Connick, P., Barton, S.K., Vasistha, N.A., Hampton, D.W., Story, D., Smigiel, R., et al. (2021). iPSC-derived myelinoids to study myelin biology of humans. Dev. Cell 56, 1346-1358.e6. https://doi.org/10.1016/j.devcel.2021.04.006
  30. Jo, J., Xiao, Y., Sun, A.X., Cukuroglu, E., Tran, H.D., Goke, J., Tan, Z.Y., Saw, T.Y., Tan, C.P., Lokman, H., et al. (2016). Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248-257. https://doi.org/10.1016/j.stem.2016.07.005
  31. Jo, J., Yang, L., Tran, H.D., Yu, W., Sun, A.X., Chang, Y.Y., Jung, B.C., Lee, S.J., Saw, T.Y., Xiao, B., et al. (2021). Lewy body-like inclusions in human midbrain organoids carrying glucocerebrosidase and α-synuclein mutations. Ann. Neurol. 90, 490-505. https://doi.org/10.1002/ana.26166
  32. Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., and Sasai, Y. (2013). Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl. Acad. Sci. U. S. A. 110, 20284-20289. https://doi.org/10.1073/pnas.1315710110
  33. Kanton, S., Boyle, M.J., He, Z., Santel, M., Weigert, A., Sanchis-Calleja, F., Guijarro, P., Sidow, L., Fleck, J.S., Han, D., et al. (2019). Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418-422. https://doi.org/10.1038/s41586-019-1654-9
  34. Kapalczynska, M., Kolenda, T., Przybyla, W., Zajaczkowska, M., Teresiak, A., Filas, V., Ibbs, M., Blizniak, R., Luczewski, L., and Lamperska, K. (2018). 2D and 3D cell cultures-a comparison of different types of cancer cell cultures. Arch. Med. Sci. 14, 910-919.
  35. Karzbrun, E., Khankhel, A.H., Megale, H.C., Glasauer, S.M., Wyle, Y., Britton, G., Warmflash, A., Kosik, K.S., Siggia, E.D., Shraiman, B.I., et al. (2021). Human neural tube morphogenesis in vitro by geometric constraints. Nature 599, 268-272. https://doi.org/10.1038/s41586-021-04026-9
  36. Karzbrun, E., Kshirsagar, A., Cohen, S.R., Hanna, J.H., and Reiner, O. (2018). Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515-522. https://doi.org/10.1038/s41567-018-0046-7
  37. Kim, H., Park, H.J., Choi, H., Chang, Y., Park, H., Shin, J., Kim, J., Lengner, C.J., Lee, Y.K., and Kim, J. (2019). Modeling G2019S-LRRK2 sporadic Parkinson's disease in 3D midbrain organoids. Stem Cell Reports 12, 518-531. https://doi.org/10.1016/j.stemcr.2019.01.020
  38. Kim, J., Koo, B.K., and Knoblich, J.A. (2020). Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571-584. https://doi.org/10.1038/s41580-020-0259-3
  39. Koo, B., Choi, B., Park, H., and Yoon, K.J. (2019). Past, present, and future of brain organoid technology. Mol. Cells 42, 617-627. https://doi.org/10.14348/molcells.2019.0162
  40. Kretzschmar, H. (2009). Brain banking: opportunities, challenges and meaning for the future. Nat. Rev. Neurosci. 10, 70-78. https://doi.org/10.1038/nrn2535
  41. Kwak, T.H., Kang, J.H., Hali, S., Kim, J., Kim, K.P., Park, C., Lee, J.H., Ryu, H.K., Na, J.E., Jo, J., et al. (2020). Generation of homogeneous midbrain organoids with in vivo-like cellular composition facilitates neurotoxin-based Parkinson's disease modeling. Stem Cells 38, 727-740. https://doi.org/10.1002/stem.3163
  42. Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A. (2013). Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379. https://doi.org/10.1038/nature12517
  43. Lee, E., Choi, J., Jo, Y., Kim, J.Y., Jang, Y.J., Lee, H.M., Kim, S.Y., Lee, H.J., Cho, K., Jung, N., et al. (2016). ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6, 18631. https://doi.org/10.1038/srep18631
  44. Lee, J.H., Shin, H., Shaker, M.R., Kim, H.J., Kim, J.H., Lee, N., Kang, M., Cho, S., Kwak, T.H., Kim, J.W., et al. (2020). Human spinal cord organoids exhibiting neural tube morphogenesis for a quantifiable drug screening system of neural tube defects. BioRxiv, https://doi.org/10.1101/2020.12.02.409177
  45. Lenz, K.M. and Nelson, L.H. (2018). Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front. Immunol. 9, 698. https://doi.org/10.3389/fimmu.2018.00698
  46. Li, Y., Muffat, J., Omer, A., Bosch, I., Lancaster, M.A., Sur, M., Gehrke, L., Knoblich, J.A., and Jaenisch, R. (2017). Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385-396.e3. https://doi.org/10.1016/j.stem.2016.11.017
  47. Lippmann, E.S., Williams, C.E., Ruhl, D.A., Estevez-Silva, M.C., Chapman, E.R., Coon, J.J., and Ashton, R.S. (2015). Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Reports 4, 632-644. https://doi.org/10.1016/j.stemcr.2015.02.018
  48. Madhavan, M., Nevin, Z.S., Shick, H.E., Garrison, E., Clarkson-Paredes, C., Karl, M., Clayton, B.L., Factor, D.C., Allan, K.C., Barbar, L., et al. (2018). Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700-706. https://doi.org/10.1038/s41592-018-0081-4
  49. Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L., Tomasini, L., Amenduni, M., Szekely, A., Palejev, D., Wilson, M., et al. (2015). FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375-390. https://doi.org/10.1016/j.cell.2015.06.034
  50. McTeague, L.M., Huemer, J., Carreon, D.M., Jiang, Y., Eickhoff, S.B., and Etkin, A. (2017). Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am. J. Psychiatry 174, 676-685. https://doi.org/10.1176/appi.ajp.2017.16040400
  51. Mora-Bermudez, F., Badsha, F., Kanton, S., Camp, J.G., Vernot, B., Kohler, K., Voigt, B., Okita, K., Maricic, T., He, Z., et al. (2016). Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. Elife 5, e18683. https://doi.org/10.7554/elife.18683
  52. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K., and Sasai, Y. (2015). Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10, 537-550. https://doi.org/10.1016/j.celrep.2014.12.051
  53. Murphy, M.P. and LeVine, H., 3rd (2010). Alzheimer's disease and the amyloid-β peptide. J. Alzheimers Dis. 19, 311-323. https://doi.org/10.3233/JAD-2010-1221
  54. Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., Saito, K., Yonemura, S., Eiraku, M., and Sasai, Y. (2012). Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771-785. https://doi.org/10.1016/j.stem.2012.05.009
  55. Ogura, T., Sakaguchi, H., Miyamoto, S., and Takahashi, J. (2018). Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells. Development 145, dev162214. https://doi.org/10.1242/dev.162214
  56. Osaki, T. and Ikeuchi, Y. (2021). Advanced complexity and plasticity of neural activity in reciprocally connected human cerebral organoids. BioRxiv, https://doi.org/10.1101/2021.02.16.431387
  57. Park, J.C., Jang, S.Y., Lee, D., Lee, J., Kang, U., Chang, H., Kim, H.J., Han, S.H., Seo, J., Choi, M., et al. (2021). A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nat. Commun. 12, 280. https://doi.org/10.1038/s41467-020-20440-5
  58. Pasca, A.M., Sloan, S.A., Clarke, L.E., Tian, Y., Makinson, C.D., Huber, N., Kim, C.H., Park, J.Y., O'rourke, N.A., Nguyen, K.D., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671-678. https://doi.org/10.1038/nmeth.3415
  59. Pellegrini, L., Bonfio, C., Chadwick, J., Begum, F., Skehel, M., and Lancaster, M.A. (2020). Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 369, eaaz5626. https://doi.org/10.1126/science.aaz5626
  60. Pollen, A.A., Bhaduri, A., Andrews, M.G., Nowakowski, T.J., Meyerson, O.S., Mostajo-Radji, M.A., Di Lullo, E., Alvarado, B., Bedolli, M., Dougherty, M.L., et al. (2019). Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743-756.e17. https://doi.org/10.1016/j.cell.2019.01.017
  61. Qian, X., Nguyen, H.N., Song, M.M., Hadiono, C., Ogden, S.C., Hammack, C., Yao, B., Hamersky, G.R., Jacob, F., Zhong, C., et al. (2016). Brain-regionspecific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238-1254. https://doi.org/10.1016/j.cell.2016.04.032
  62. Raja, W.K., Mungenast, A.E., Lin, Y.T., Ko, T., Abdurrob, F., Seo, J., and Tsai, L.H. (2016). Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer's disease phenotypes. PLoS One 11, e0161969. https://doi.org/10.1371/journal.pone.0161969
  63. Renner, H., Grabos, M., Becker, K.J., Kagermeier, T.E., Wu, J., Otto, M., Peischard, S., Zeuschner, D., TsyTsyura, Y., Disse, P., et al. (2020). A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. Elife 9, e52904. https://doi.org/10.7554/eLife.52904
  64. Rifes, P., Isaksson, M., Rathore, G.S., Aldrin-Kirk, P., Moller, O.K., Barzaghi, G., Lee, J., Egerod, K.L., Rausch, D.M., Parmar, M., et al. (2020). Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat. Biotechnol. 38, 1265-1273. https://doi.org/10.1038/s41587-020-0525-0
  65. Sakaguchi, H., Kadoshima, T., Soen, M., Narii, N., Ishida, Y., Ohgushi, M., Takahashi, J., Eiraku, M., and Sasai, Y. (2015). Generation of functional hippocampal neurons from self-organizing human embryonic stem cellderived dorsomedial telencephalic tissue. Nat. Commun. 6, 8896. https://doi.org/10.1038/ncomms9896
  66. Samarasinghe, R.A., Miranda, O.A., Buth, J.E., Mitchell, S., Ferando, I., Watanabe, M., Allison, T.F., Kurdian, A., Fotion, N.N., Gandal, M.J., et al. (2021). Identification of neural oscillations and epileptiform changes in human brain organoids. Nat. Neurosci. 24, 1488-1500. https://doi.org/10.1038/s41593-021-00906-5
  67. Seo, K., Cho, S., Lee, J.H., Kim, J.H., Lee, B., Jang, H., Kim, Y., Cho, H.M., Lee, S., Park, Y., et al. (2021). Symmetry breaking of hPSCs in micropattern generates a polarized spinal cord-like organoid (pSCO) with dorsoventral organization. BioRxiv, https://doi.org/10.1101/2021.09.18.460734
  68. Shaker, M.R., Pietrogrande, G., Martin, S., Lee, J.H., Sun, W., and Wolvetang, E.J. (2021). Rapid and efficient generation of myelinating human oligodendrocytes in organoids. Front. Cell. Neurosci. 15, 631548. https://doi.org/10.3389/fncel.2021.631548
  69. Shi, Y., Sun, L., Wang, M., Liu, J., Zhong, S., Li, R., Li, P., Guo, L., Fang, A., Chen, R., et al. (2020). Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 18, e3000705. https://doi.org/10.1371/journal.pbio.3000705
  70. Song, L., Yuan, X., Jones, Z., Vied, C., Miao, Y., Marzano, M., Hua, T., Sang, Q.X.A., Guan, J., Ma, T., et al. (2019). Functionalization of brain region-specific spheroids with isogenic microglia-like cells. Sci. Rep. 9, 11055. https://doi.org/10.1038/s41598-019-47444-6
  71. Tau, G.Z. and Peterson, B.S. (2010). Normal development of brain circuits. Neuropsychopharmacology 35, 147-168. https://doi.org/10.1038/npp.2009.115
  72. Trujillo, C.A., Gao, R., Negraes, P.D., Gu, J., Buchanan, J., Preissl, S., Wang, A., Wu, W., Haddad, G.G., Chaim, I.A., et al. (2019). Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558-569.e7. https://doi.org/10.1016/j.stem.2019.08.002
  73. Ueda, H.R., Erturk, A., Chung, K., Gradinaru, V., Chedotal, A., Tomancak, P., and Keller, P.J. (2020). Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21, 61-79. https://doi.org/10.1038/s41583-019-0250-1
  74. Valiente, M. and Marin, O. (2010). Neuronal migration mechanisms in development and disease. Curr. Opin. Neurobiol. 20, 68-78. https://doi.org/10.1016/j.conb.2009.12.003
  75. Van Spronsen, M. and Hoogenraad, C.C. (2010). Synapse pathology in psychiatric and neurologic disease. Curr. Neurol. Neurosci. Rep. 10, 207-214. https://doi.org/10.1007/s11910-010-0104-8
  76. Von Dassow, M. and Davidson, L.A. (2011). Physics and the canalization of morphogenesis: a grand challenge in organismal biology. Phys. Biol. 8, 045002. https://doi.org/10.1088/1478-3975/8/4/045002
  77. Warmflash, A., Sorre, B., Etoc, F., Siggia, E.D., and Brivanlou, A.H. (2014). A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847-854. https://doi.org/10.1038/nmeth.3016
  78. Worsdorfer, P., Dalda, N., Kern, A., Kruger, S., Wagner, N., Kwok, C.K., Henke, E., and Ergun, S. (2019). Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci. Rep. 9, 15663. https://doi.org/10.1038/s41598-019-52204-7
  79. Wulansari, N., Darsono, W.H.W., Woo, H.J., Chang, M.Y., Kim, J., Bae, E.J., Sun, W., Lee, J.H., Cho, I.J., Shin, H., et al. (2021). Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson's disease-linked DNAJC6 mutations. Sci. Adv. 7, eabb1540. https://doi.org/10.1126/sciadv.abb1540
  80. Xiang, Y., Tanaka, Y., Cakir, B., Patterson, B., Kim, K.Y., Sun, P., Kang, Y.J., Zhong, M., Liu, X., Patra, P., et al. (2019). hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24, 487-497.e7. https://doi.org/10.1016/j.stem.2018.12.015
  81. Ye, F., Kang, E., Yu, C., Qian, X., Jacob, F., Yu, C., Mao, M., Poon, R.Y., Kim, J., Song, H., et al. (2017). DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron 96, 1041-1054.e5. https://doi.org/10.1016/j.neuron.2017.10.010
  82. Yoon, S.J., Elahi, L.S., Pasca, A.M., Marton, R.M., Gordon, A., Revah, O., Miura, Y., Walczak, E.M., Holdgate, G.M., Fan, H.C., et al. (2019). Reliability of human cortical organoid generation. Nat. Methods 16, 75-78. https://doi.org/10.1038/s41592-018-0255-0
  83. Zafeiriou, M.P., Bao, G., Hudson, J., Halder, R., Blenkle, A., Schreiber, M.K., Fischer, A., Schild, D., and Zimmermann, W.H. (2020). Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids. Nat. Commun. 11, 3791. https://doi.org/10.1038/s41467-020-17521-w
  84. Zallen, J.A. (2007). Planar polarity and tissue morphogenesis. Cell 129, 1051-1063. https://doi.org/10.1016/j.cell.2007.05.050
  85. Zhang, W., Yang, S.L., Yang, M., Herrlinger, S., Shao, Q., Collar, J.L., Fierro, E., Shi, Y., Liu, A., Lu, H., et al. (2019). Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors. Nat. Commun. 10, 2612. https://doi.org/10.1038/s41467-019-10497-2
  86. Zhao, J., Fu, Y., Yamazaki, Y., Ren, Y., Davis, M.D., Liu, C.C., Lu, W., Wang, X., Chen, K., Cherukuri, Y., et al. (2020). APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nat. Commun. 11, 5540. https://doi.org/10.1038/s41467-020-19264-0