DOI QR코드

DOI QR Code

Edge Caching Strategy with User Mobility in Heterogeneous Cellular Network Environments

이종 셀룰러 네트워크 환경에서 사용자 이동성을 고려한 엣지 캐싱 기법

  • Received : 2021.12.23
  • Accepted : 2022.01.05
  • Published : 2022.02.28

Abstract

As the use of mobile data increases, the proportion of video content is increasing steeply. In order to solve problems that arise when mobile users receive data from geographically remote cloud servers, methods of caching data in advance to edge servers geographically close to the users are attracting lots of attention. In this paper, we present a caching policy that stores data on Small Cell Base Station(SBS) to effectively provide content files to mobile users by applying a delayed offloading scheme in a cellular network. The goal of the proposed policy is to minimize the size of data transmitted from Macro Base Station(MBS) because the delayed offloading scheme requires more cost than when downloaded from MBS than from SBS. The caching policy is proposed to determine the size of content file and which content file to be cached to SBS using the probability of mobile users' paths and the popularity of content files, and to replace content files in consideration of the overlapping coverage of SBS. In addition, through performance evaluation, it has been proven that the proposed policy reduces the size of data downloaded from MBS compared to other algorithms.

모바일 데이터의 사용이 늘어나면서 특히 비디오 콘텐츠가 차지하는 비중이 가파르게 증가하고 있다. 모바일 사용자가 지리적으로 원거리에 위치한 클라우드 서버를 통해 데이터를 전달받으면서 발생하는 문제들을 해결하기 위해 사용자와 지리적으로 가까운 엣지 서버에 미리 데이터를 캐싱하는 방법이 많은 주목을 받고 있다. 본 논문에서는 셀룰러 네트워크 환경에서 지연 오프로딩 스킴(delayed offloading scheme)을 적용해 모바일 사용자에게 효과적으로 콘텐츠 파일을 제공하기 위한 SBS 캐싱 기법을 제안하였다. 지연 오프로딩 스킴에서 Macro Base Station(MBS)보다 Small Cell Base Station(SBS)으로부터 데이터를 다운받는 경우 더 적은 비용을 요구하기 때문에 MBS로부터 전송받는 데이터 크기를 최소화하는 것을 목표로 하였다. 모바일 사용자의 이동 경로 확률과 콘텐츠 파일의 인기도를 사용해 SBS에 캐싱할 콘텐츠 파일과 그 크기를 결정하고 SBS의 서비스 범위가 중복되는 것을 고려해 콘텐츠 파일을 재배치하는 캐싱 기법을 제안하였다. 또한 실험을 통해 다른 알고리즘보다 MBS로부터 다운받는 데이터 크기를 줄일 수 있다는 것을 증명하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1047113).

References

  1. Cisco, "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017-2022," [Internet], http://media.mediapost.com/uploads/CiscoForecast.pdf.
  2. R. Yang and S. Guo, "A mobile edge caching strategy for video grouping in vehicular networks," 2021 13th International Conference on Advanced Computational Intelligence (ICACI), Wanzhou, China, 2021.
  3. Z. Yu, J. Hu, G. Min, H. Xu, and J. Mills, "Proactive content caching for internet-of-vehicles based on peer-to-peer federated learning," 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), Hong Kong, 2021.
  4. G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, "Understanding performance of edge content caching for mobile video streaming," IEEE Journal on Selected Areas in Communications, Vol.35, No.5, pp.1076-1089, 2017. https://doi.org/10.1109/JSAC.2017.2680958
  5. E. Ozfatura and D. Gunduz, "Mobility and popularity-aware coded small-cell caching," IEEE Communications Letters, Vol.22, No.2, pp.288-291, 2018. https://doi.org/10.1109/lcomm.2017.2774799
  6. S. Park, S. Oh, Y. Nam, J. Bang, and E. Lee, "Mobility-aware distributed proactive caching in content-centric vehicular networks," 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC), Paris, France, 2019.
  7. Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain "Mobility-aware proactive edge caching for connected vehicles using federated learning," IEEE Transactions on Intelligent Transportation Systems, Vol.22, No.8, pp.5341-5351, 2021. https://doi.org/10.1109/TITS.2020.3017474
  8. L. Yao, A. Chen, J. Deng, J. Wanga, and G. Wu, "A cooperative caching scheme based on mobility prediction in vehicular content centric networks," IEEE Transactions on Vehicular Technology, Vol.67, No.6, pp.5435-5444, 2018. https://doi.org/10.1109/tvt.2017.2784562
  9. K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, "Cooperative content caching in 5G networks with mobile edge computing," IEEE Wireless Communications, Vol.25, No.3, pp.80-87, 2018. https://doi.org/10.1109/mwc.2018.1700303
  10. J. Yao, T. Han, and N. Ansari, "On mobile edge caching," IEEE Communications Surveys & Tutorials, Vol.21, No.3, pp.2525-2553, 2019. https://doi.org/10.1109/COMST.2019.2908280
  11. A. Mahmoo, C. E. Casetti, C. F. Chiasserini, P. Giaccone, and J. Harri, "The RICH prefetching in edge caches for in-order delivery to connected cars," IEEE Transactions on Vehicular Technology, Vol.68, No.1, pp.4-18, 2019. https://doi.org/10.1109/TVT.2018.2879850
  12. S. Park, Y. Shin, Y. Nam, J. Bang, and E. Lee, "Proactive caching protocol based on trajectory transition probability in vehicular networks," Proceedings of Symposium of the Korean Institute of communications and Information Sciences, pp.581-582, 2019.
  13. S. Zhang, W. Sun, and J. Liu, "Spatially cooperative caching and optimization for heterogeneous network," IEEE Transactions on Vehicular Technology, Vol.68, No.11, pp.11260-11270, 2019. https://doi.org/10.1109/tvt.2019.2941115
  14. H. Im and C. Hong, "A research on machine learning based mobility prediction method for content caching," Proceedings of Symposium of the Korean Institute of Information Scientists and Engineers, pp.1097-1099, 2018.
  15. A.-T. Tran, T.-V. Nguyen, V.-D. Tuong, N.-N. Dao, and S. Cho, "On stalling minimization of adaptive bitrate video services in edge caching systems," 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 2020.
  16. K. Poularakis and L. Tassiulas, "Code, cache and deliver on the move: A novel caching paradigm in hyper-dense small-cell networks," IEEE Transactions on Mobile Computing, Vol.16, No.3, pp.675-687, 2017. https://doi.org/10.1109/TMC.2016.2575837