DOI QR코드

DOI QR Code

AWGN 환경에서 가우시안 분포 기반의 퍼지 가중치를 사용한 스위칭 필터 알고리즘

Switching Filter Algorithm using Fuzzy Weights based on Gaussian Distribution in AWGN Environment

  • Cheon, Bong-Won (Dept. of Smart Robot Convergence and Application Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • 투고 : 2021.11.23
  • 심사 : 2021.12.25
  • 발행 : 2022.02.28

초록

최근 IoT 기술과 AI의 성능향상에 따라 폭넓은 분야에서 자동화와 무인화가 진행되고 있으며, 사물인식과 객체분류 등 자동화의 기반이 되는 영상처리에 대한 관심이 높아지고 있다. 영상의 잡음 제거는 영상에 기반한 시스템에서 전처리 단계로 사용하는 중요한 과정으로 다양한 연구가 진행되었으나, 대부분의 경우 에지와 같은 고주파 성분에서 스무딩 효과에 의해 디테일한 정보를 보존하기 어렵다는 단점이 있다. 본 논문은 AWGN(additive white Gaussian noise)에 훼손된 영상을 가우시안 분포에 기반한 퍼지 가중치를 사용하여 복원하는 알고리즘을 제안한다. 제안한 알고리즘은 필터링 마스크와 잡음 추정치를 서로 비교하여 필터링 과정을 스위칭하였으며, 영상의 저주파 및 고주파 성분에 따라 퍼지 가중치를 계산하여 영상을 복원하였다.

Recently, with the improvement of the performance of IoT technology and AI, automation and unmanned work are progressing in a wide range of fields, and interest in image processing, which is the basis of automation such as object recognition and object classification, is increasing. Image noise removal is an important process used as a preprocessing step in an image processing system, and various studies have been conducted. However, in most cases, it is difficult to preserve detailed information due to the smoothing effect in high-frequency components such as edges. In this paper, we propose an algorithm to restore damaged images in AWGN(additive white Gaussian noise) using fuzzy weights based on Gaussian distribution. The proposed algorithm switched the filtering process by comparing the filtering mask and the noise estimate with each other, and reconstructed the image by calculating the fuzzy weights according to the low-frequency and high-frequency components of the image.

키워드

참고문헌

  1. D. Chowdhury, S. K. Das, S. Nandy, A. Chakraborty, R. Goswami, and A. Chakraborty, "An Atomic Technique for Removal of Gaussian Noise from a Noisy Gray Scale Image using Low-Pass Convoluted Gaussian Filter," in 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), Kolkata : India, pp. 1-6, 2019. DOI: 10.1109/OPTRONIX.2019.8862330.
  2. P. S. V. S. Sridhar and R. Caytiles, "Efficient Cloud Data Hosting Availability," Asia-pacific Journal of Convergent Research Interchange, vol. 3, no. 2, pp. 11-19, Jun. 2017. DOI: 10.21742/APJCRI.2017.06.02.
  3. K. Kai, L. Tingting, X. Xianchun, Z. Guoquan, and Z. Jianxin, "Study of Infrared Image Denoising Algorithm based on Steering Kernel Regression Image Guided Filter," in 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan : China, pp. 1-3, 2019. DOI: 10.1109/ICOCN.2019.8934701.
  4. B. W. Cheon and N. H. Kim, "Modified Gaussian Filter Algorithm using Quadtree Segmentation in AWGN Environment," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 9, pp. 1176-1182, Sep. 2021. DOI: 10.6109/jkiice.2021.25.9.1176.
  5. R. Lai, Y. Mo, Z. Liu, and J. Guan, "Local and Nonlocal Steering Kernel Weighted Total Variation Model for Image Denoising," Symmetry 2019, vol. 11, no. 3, pp. 1-16, Mar. 2019. DOI: 10.3390/sym11030329.
  6. S. Y. Kim, S. H. Yu, and J. C. Jeong, "A Wiener Filter using Edge Detection for Gaussian Noise Reduction," in Conference on The Institute of Electronics and Information Engineers, Incheon : Korea, pp. 430-433, 2018.
  7. M. Chowdhury, J. Gao, and R. Islam, "Fuzzy Logic based Filtering for Image De-noising," in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC : Canada, pp. 2372-2376, 2016. DOI: 10.1109/FUZZ-IEEE. 2016.7737990.
  8. S. Trambadia and P. Dholakia, "Design and Analysis of an Image Restoration using Wiener Filter with a Quality based Hybrid Algorithms," in 2015 2nd International Conference on Electronics and Communication Systems, Coimbatore : India, pp. 1318-1323, 2015. DOI: 10.1109/ECS.2015.7124798.