Abstract
During the winter season, when the weather gets colder every year, electricity consumption increases rapidly. The occurrence of fires is increasing due to a short circuit in electrical facilities of buildings such as markets, bathrooms, and apartments with high population density while using a lot of electricity. The cause of these short circuit fires is mostly due to the aging of the wires, the usage increases, and the excessive load cannot be endured, and the wire sheath is melted and caused by nearby ignition materials. In this paper, the load and overheat generated in the electric wire are measured through a complex sensor composed of an overload sensor, a VoC sensor, and an overheat sensor. Based on this, big data analysis is carried out to develop a platform capable of predicting, alerting, and blocking electric fires in real time, and a simulator capable of simulated fire experiments.
매년 날씨가 추워지는 동절기에는 전기 사용량이 급증하는 특징을 보인다. 많은 전기를 사용하면서 인구 밀도가 높은 시장, 목욕탕, 아파트 등의 건물들의 전기 시설의 누전으로 인해 화재 발생이 늘어나고 있다. 이러한 누전화재의 원인은 대부분 전선의 노후화로 인해 사용량이 증가되어 과도하게 걸리는 부하를 견디지 못하고 전선피복이 녹아내려 주변의 발화물질로 인하여 발생하게 된다. 본 논문에서는 과부하센서, VoC센서, 과열센서로 구성된 복합 센서를 통해 전선에 발생하는 부하 및 과열을 측정하며, 이 때 발생된 유독가스를 검출하고 게이트웨이를 활용하여 서버에 로깅하는 시스템을 구현한다. 이를 바탕으로 빅데이터 분석을 진행하여 실시간으로 전기화재를 예측, 경보 및 차단이 가능한 플랫폼과 모의 화재발생 실험이 가능한 시뮬레이터를 개발한다.